北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (2): 209-216. doi: 10.19723/j.issn.1671-167X.2022.02.002

• 论著 • 上一篇    下一篇

CACNA1H基因敲除对小鼠孤独症样行为及海马神经元形态学的影响

焦翠1,王俭妹1,况海霞1,武志红1,(),柳涛1,2,()   

  1. 1.南昌大学第一附属医院 儿科,南昌 330006
    2.南昌大学第一附属医院 医学科研中心,南昌 330006
  • 收稿日期:2020-02-18 出版日期:2022-04-18 发布日期:2022-04-13
  • 通讯作者: 武志红,柳涛 E-mail:1390959916@qq.com;liutao1241@ncu.edu.cn
  • 基金资助:
    国家自然科学基金(31660289);江西省杰出青年人才资助计划(20171BCB23091);南昌大学研究生创新专项基金(CX2018166);江西省自然科学基金(20202BABL206049)

Effects of CACNA1H gene knockout on autistic-like behaviors and the morphology of hippocampal neurons in mice

JIAO Cui1,WANG Jian-mei1,KUANG Hai-xia1,WU Zhi-hong1,(),LIU Tao1,2,()   

  1. 1. Department of Pediatrics, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
    2. Center for Experimental Medicine, the First Affiliated Hospital of Nanchang University, Nanchang 330006, China
  • Received:2020-02-18 Online:2022-04-18 Published:2022-04-13
  • Contact: Zhi-hong WU,Tao LIU E-mail:1390959916@qq.com;liutao1241@ncu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(31660289);Excellent Young Scientist Foundation of Jiangxi(20171BCB23091);Graduate Innovation Foundation of Nanchang University(CX2018166);Natural Science Foundation of Jiangxi Province(20202BABL206049)

RICH HTML

  

摘要:

目的: 研究CACNA1H基因敲除(knockout, KO)对小鼠孤独症样行为及海马神经元形态学的影响。方法: 25只3~4周龄C57BL/6背景的CACNA1H KO小鼠作为实验组,26只同年龄同背景的野生型(wild type,WT)小鼠作为对照组。通过三箱实验和旷场实验观察小鼠社交、焦虑和重复刻板行为后测量其脑质量与脑体积,用尼氏染色法(Nissl staining)观察海马神经元数目。将CACNA1H杂合子小鼠与Thy1-GFP-O小鼠杂交,构建CACNA1H-/--Thy1+(KO-GFP)及CACNA1H+/+-Thy1+(WT-GFP)小鼠,观察海马神经元树突棘密度及成熟度。结果: 三箱实验中,社交测试阶段,KO小鼠在陌生鼠箱中的时间比空箱更长(F1,14=95.086,P<0.05;Post-Hoc:P<0.05),探索的偏好指数与对照组相比差异无统计学意义(t=1.044,P>0.05);新社交对象识别测试阶段,KO小鼠在新陌生鼠箱与陌生鼠箱中的时间差异无统计学意义(F1,14=18.062,P<0.05;Post-Hoc:P>0.05),探索的偏好指数低于对照组(t=2.390,P<0.05)。旷场实验中,KO小鼠在旷场中心活动时间明显少于对照组(t=2.503,P<0.05),自梳理时间明显多于对照组(t=-2.299,P<0.05)。形态学结果显示,KO小鼠脑质量/体质量和脑体积与对照组相比差异均无统计学意义(t=0.356,P>0.05;t=-0.660,P>0.05),但其海马齿状回区神经元数目较对照组减少(t=2.323,P<0.05),且KO-GFP小鼠海马齿状回区树突棘密度较对照组增加(t=-2.374,P<0.05),而成熟度差异无统计学意义(t=-1.935,P>0.05)。结论: CACNA1H KO小鼠具有孤独症样行为,可能与海马齿状回区神经元数目减少及树突棘密度增高有关。

关键词: CACNA1H, 小鼠, 基因敲除, 孤独症谱系障碍, 行为测试

Abstract:

Objective: To investigate the effects of CACNA1H gene knockout (KO) on autistic-like behaviors and the morphology of hippocampal neurons in mice. Methods: In the study, 25 CACNA1H KO mice of 3-4 weeks old and C57BL/6 background were recruited as the experimental group, and 26 wild type (WT) mice of the same age and background were recruited as the control group. Three-chamber test and open field test were used to observe the social interaction, anxiety, and repetitive behaviors in mice. After that, their brain weight and size were measured, and the number of hippocampal neurons were observed by Nissl staining. Furthermore, the CACNA1H heterozygote mice were interbred with Thy1-GFP-O mice to generate CACNA1H -/--Thy1+(KO-GFP) and CACNA1H +/+-Thy1+ (WT-GFP) mice. The density and maturity of dendritic spines of hippocampal neurons were observed. Results: In the sociability test session of the three-chamber test, the KO mice spent more time in the chamber of the stranger mice than in the object one (F1,14=95.086, P<0.05; Post-Hoc: P<0.05), without any significant difference for the explored preference index between the two groups (t=1.044, P>0.05). However, in the social novelty recognition test session, no difference was observed between the time of the KO mice spend in the chamber of new stranger mice and the stranger one (F1,14=18.062, P<0.05; Post-Hoc: P>0.05), and the explored preference index of the KO mice was less than that of the control group (t=2.390, P<0.05). In the open field test, the KO mice spent less time in the center of the open field apparatus than the control group (t=2.503, P<0.05), but the self-grooming time was significantly increased compared with the control group (t=-2.299, P<0.05). Morphological results showed that the brain weight/body weight ratio (t=0.356, P>0.05) and brain size (t=-0.660, P>0.05) of the KO mice were not significantly different from those of the control group, but the number of neurons were significantly reduced in hippocampal dentate gyrus compared with the control group (t=2.323, P<0.05). Moreover, the density of dendritic spine of dentate gyrus neurons in the KO-GFP mice was significantly increased compared with the control group (t=-2.374, P<0.05), without any significant difference in spine maturity (t=-1.935, P>0.05). Conclusion: CACNA1H KO mice represent autistic-like behavior, which may be related to the decrease in the number of neurons and the increase in the density of dendritic spine in the dentate gyrus.

Key words: CACNA1H, Mice, knockout, Autism spectrum disorder, Behavior test

中图分类号: 

  • R749.94

图1

CACNA1H基因敲除对小鼠社交行为的影响"

表1

WT与KO小鼠的三箱实验结果"

Genotype Sociability Social novelty recognition
O/s S1/s PI S1/s S2/s PI
WT 158.05±19.93 353.36±25.35* 0.62±0.07 153.24±27.87 346.03±38.77# 0.52±0.08
KO 155.33±15.55 349.44±19.24* 0.50±0.10 226.18±32.21 254.84±33.45 0.15±0.15

图2

CACNA1H基因敲除对小鼠焦虑及自梳理行为的影响 A, representative track and heat maps of mice movements in the open field test; B, the time spend in the center was decreased in KO mice (n=18) compared to that of the WT mice (n=17); C, the grooming time was significantly increased in KO mice (n=12) compared to that of the WT mice (n=15). Abbreviations as in Figure 1. * P<0.05."

表2

WT与KO小鼠的旷场实验结果"

Parameter Genotype Time/s
Anxiety (time in center) WT 53.87±6.01
KO 36.30±3.63*
Repetitive behavior (self-grooming) WT 69.86±13.53
KO 131.66±24.92*

图3

CACNA1H基因敲除对小鼠大脑形态及海马神经元数目的影响"

表3

WT与KO小鼠体质量、脑质量/体质量和脑体积测量"

Genotype Body weight/g Brain weight/body weight Brain size/mL
WT 7.05±0.97 0.06±0.00 0.39±0.00
KO 7.43±0.99 0.06±0.01 0.40±0.02

表4

WT与KO小鼠海马区尼氏染色神经元相对数"

Genotype Hippocampus
CA1 CA2 CA3 CA4 DG
WT 1.00±0.04 1.00±0.08 1.00±0.07 1.00±0.06 1.00±0.03
KO 0.95±0.08 0.85±0.06 0.86±0.11 0.86±0.06 0.86±0.05*

图4

CACNA1H基因敲除对小鼠树突棘的影响"

[1] Baio J, Wiggins L, Christensen DL, et al. Prevalence of autism spectrum disorder among children aged 8 years: Autism and Deve-lopmental Disabilities Monitoring Network, 11 Sites, United States, 2014[J]. MMWR Surveill Summ, 2018, 67(6):1-23.
doi: 10.15585/mmwr.ss6706a1 pmid: 29701730
[2] Bai D, Yip BHK, Windham GC, et al. Association of genetic and environmental factors with autism in a 5-country cohort[J]. JAMA Psychiatry, 2019, 76(10):1035-1043.
doi: 10.1001/jamapsychiatry.2019.1411
[3] Iakoucheva LM, Muotri AR, Sebat J. Getting to the cores of autism[J]. Cell, 2019, 178(6):1287-1298.
doi: S0092-8674(19)30836-0 pmid: 31491383
[4] Andrade A, Brennecke A, Mallat S, et al. Genetic associations between voltage-gated calcium channels and psychiatric disorders[J]. Int J Mol Sci, 2019, 20(14):3537.
doi: 10.3390/ijms20143537
[5] Rebellato P, Kaczynska D, Kanatani S, et al. The T-type Ca2+ channel Cav3.2 regulates differentiation of neural progenitor cells during cortical development via caspase-3[J]. Neuroscience, 2019, 402:78-89.
doi: S0306-4522(19)30035-1 pmid: 30677486
[6] Souza IA, Gandini MA, Zhang FX, et al. Pathogenic Cav3.2 channel mutation in a child with primary generalized epilepsy[J]. Mol Brain, 2019, 12(1):86.
doi: 10.1186/s13041-019-0509-5
[7] Splawski I, Yoo DS, Stotz SC, et al. CACNA1H mutations in autism spectrum disorders[J]. J Biol Chem, 2006, 281(31):22085-22091.
doi: 10.1074/jbc.M603316200 pmid: 16754686
[8] Chourasia N, Osso-Rivera H, Ghosh A, et al. Expanding the phenotypic spectrum of CACNA1H mutations[J]. Pediatr Neurol, 2019, 93:50-55.
doi: S0887-8994(18)30384-9 pmid: 30686625
[9] Feng XJ, Ma LX, Jiao C, et al. Nerve injury elevates functional Cav3.2 channels in superficial spinal dorsal horn[J]. Mol Pain, 2019, 15:1744806919836569.
[10] Takumi T, Tamada K, Hatanaka F, et al. Behavioral neuroscience of autism[J]. Neurosci Biobehav Rev, 2020, 110:60-76.
doi: S0149-7634(18)30372-5 pmid: 31059731
[11] Kaidanovich-Beilin O, Lipina T, Vukobradovic I, et al. Assessment of social interaction behaviors[J]. J Vis Exp, 2011(48):e2473.
[12] Seibenhener ML, Wooten MC. Use of the Open Field Maze to measure locomotor and anxiety-like behavior in mice[J]. J Vis Exp, 2015(96):e52434.
[13] Harris KM, Jensen FE, Tsao B. Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: Implications for the maturation of synaptic physiology and long-term potentiation[J]. J Neurosci, 1992, 12(7):2685-2705.
pmid: 1613552
[14] Bader PL, Faizi M, Kim LH, et al. Mouse model of Timothy syndrome recapitulates triad of autistic traits[J]. Proc Natl Acad Sci USA, 2011, 108(37):15432-15437.
doi: 10.1073/pnas.1112667108
[15] Iossifov I, O’roak BJ, Sanders SJ, et al. The contribution of de novo coding mutations to autism spectrum disorder[J]. Nature, 2014, 515(7526):216-221.
doi: 10.1038/nature13908
[16] D’gama AM, Pochareddy S, Li M, et al. Targeted DNA sequencing from autism spectrum disorder brains implicates multiple genetic mechanisms[J]. Neuron, 2015, 88(5):910-917.
doi: 10.1016/j.neuron.2015.11.009
[17] Lee YH, Yamrom B, Wigler M, et al. Low load for disruptive mutations in autism genes and their biased transmission[J]. Proc Natl Acad Sci USA, 2015, 112(41):E5600-E5607.
[18] Takata A, Miyake N, Tsurusaki Y, et al. Integrative analyses of de novo mutations provide deeper biological insights into autism spectrum disorder[J]. Cell Rep, 2018, 22(3):734-747.
doi: 10.1016/j.celrep.2017.12.074
[19] Gangarossa G, Laffray S, Bourinet E, et al. T-type calcium channel Cav3.2 deficient mice show elevated anxiety, impaired memory and reduced sensitivity to psychostimulants[J]. Front Behav Neurosci, 2014, 8:92.
doi: 10.3389/fnbeh.2014.00092 pmid: 24672455
[20] Tao J, Hildebrand ME, Liao P, et al. Activation of corticotropin-releasing factor receptor 1 selectively inhibits Cav3.2 T-type calcium channels[J]. Mol Pharmacol, 2008, 73(6):1596-1609.
doi: 10.1124/mol.107.043612
[21] Henbid MT, Marks WN, Collins MJ, et al. Sociability impairments in genetic absence epilepsy rats from Strasbourg: Reversal by the T-type calcium channel antagonist Z944[J]. Exp Neurol, 2017, 296:16-22.
doi: S0014-4886(17)30161-9 pmid: 28658605
[22] Chen CC, Shen JW, Chung NC, et al. Retrieval of context-asso-ciated memory is dependent on the Ca(v)3.2 T-type calcium channel[J]. PLoS One, 2012, 7(1):e29384.
doi: 10.1371/journal.pone.0029384
[23] Bauman M, Kemper TL. Histoanatomic observations of the brain in early infantile autism[J]. Neurology, 1985, 35(6):866-874.
pmid: 4000488
[24] Courchesne E, Mouton PR, Calhoun ME, et al. Neuron number and size in prefrontal cortex of children with autism[J]. Jama, 2011, 306(18):2001-2010.
doi: 10.1001/jama.2011.1638 pmid: 22068992
[25] Chemin J, Nargeot J, Lory P. Neuronal T-type alpha 1H calcium channels induce neuritogenesis and expression of high-voltage-activated calcium channels in the NG108-15 cell line[J]. J Neurosci, 2002, 22(16):6856-6862.
pmid: 12177183
[26] Cai Y, Tang X, Chen X, et al. Liver X receptor beta regulates the development of the dentate gyrus and autistic-like behavior in the mouse[J]. Proc Natl Acad Sci USA, 2018, 115(12):E2725-E2733.
[27] Ito H, Morishita R, Nagata KI. Autism spectrum disorder-asso-ciated genes and the development of dentate granule cells[J]. Med Mol Morphol, 2017, 50(3):123-129.
doi: 10.1007/s00795-017-0161-z
[28] Bernal Sierra YA, Haseleu J, Kozlenkov A, et al. Genetic tracing of Cav3.2 T-type calcium channel expression in the peripheral nervous system[J]. Front Mol Neurosci, 2017, 10:70.
doi: 10.3389/fnmol.2017.00070 pmid: 28360836
[29] Martínez-Cerdeño V. Dendrite and spine modifications in autism and related neurodevelopmental disorders in patients and animal models[J]. Dev Neurobiol, 2017, 77(4):393-404.
doi: 10.1002/dneu.22417 pmid: 27390186
[30] Katsarou AM, Galanopoulou AS, Moshe SL. Epileptogenesis in neonatal brain[J]. Semin Fetal Neonatal Med, 2018, 23(3):159-167.
doi: 10.1016/j.siny.2017.12.004
[31] Aguado C, Garcia-Madrona S, Gil-Minguez M, et al. Ontogenic changes and differential localization of T-type Ca(2+) channel subunits Cav3.1 and Cav3.2 in mouse hippocampus and cerebellum[J]. Front Neuroanat, 2016, 10:83.
[32] Huang IY, Hsu YL, Chen CC, et al. Excavatolide-B enhances contextual memory retrieval via repressing the delayed rectifier potassium current in the hippocampus[J]. Mar Drugs, 2018, 16(11):405.
doi: 10.3390/md16110405
[1] 袁婷婷,李燊,吴燕,吴海涛. 长期自由选择饮酒小鼠模型的建立及其行为学评价[J]. 北京大学学报(医学版), 2023, 55(2): 315-323.
[2] 赵亚楠,范慧芸,王翔宇,罗雅楠,张嵘,郑晓瑛. 孤独症患者过早死亡风险及死亡原因[J]. 北京大学学报(医学版), 2023, 55(2): 375-383.
[3] 张京,宋佳桂,王振斌,龚玉清,王天卓,周津羽,战军,张宏权. Kindlin-2通过mTOR和Hippo信号通路调节小鼠子宫内膜发育[J]. 北京大学学报(医学版), 2022, 54(5): 846-852.
[4] 贾睿璇,姜尚伟,赵琳,杨丽萍. Cyp4v3基因敲除小鼠模型的表型分析[J]. 北京大学学报(医学版), 2021, 53(6): 1099-1106.
[5] 朱忆颖,闵赛南,俞光岩. 局部注射环孢素A对非肥胖糖尿病小鼠下颌下腺分泌功能及炎症的影响[J]. 北京大学学报(医学版), 2021, 53(4): 750-757.
[6] 朱梅青,崔蓉. 高效液相色谱法测定小鼠血浆中苯并三唑类紫外线吸收剂UV-327和UV-328[J]. 北京大学学报(医学版), 2020, 52(3): 591-596.
[7] 张晓威,殷华奇,李清,赵永平,KiteBrandes,白文俊,徐涛. 人类趋化素样因子超家族2参与小鼠精子形成[J]. 北京大学学报(医学版), 2019, 51(2): 228-233.
[8] 吴天伟,崔蓉,张宝旭. 高效液相色谱法测定小鼠血浆中8-甲氧基补骨脂素及其药代动力学研究[J]. 北京大学学报(医学版), 2018, 50(5): 792-796.
[9] 康磊,霍焱,王荣福,张春丽,闫平,徐小洁. MicroRNA-155靶向的放射性标记探针对乳腺癌小鼠模型的活体显像[J]. 北京大学学报(医学版), 2018, 50(2): 326-330.
[10] 张伟,庞春艳,王永福. 脂肪间充质干细胞对MRL/lpr小鼠的治疗效果及对脾脏Th17/Treg细胞平衡的影响[J]. 北京大学学报(医学版), 2017, 49(6): 974-978.
[11] 石慧峰, 张敬旭, 张嵘, 王晓莉. 中国0~6岁儿童孤独症谱系障碍患病率的meta分析[J]. 北京大学学报(医学版), 2017, 49(5): 798-806.
[12] 孙睿, 高波, 郭传瑸. 裸小鼠淋巴结的解剖和组织学特点[J]. 北京大学学报(医学版), 2017, 49(5): 893-898.
[13] 高丽,于晓潜,蔡宇. 丝线结扎及局部涂抹牙龈卟啉单胞菌对小鼠牙槽骨骨吸收的影响[J]. 北京大学学报(医学版), 2017, 49(1): 31-035.
[14] 王志华,张伟,张艳清,庞春艳,王永福. CD40 siRNA对 MRL/Lpr狼疮小鼠炎症反应的影响[J]. 北京大学学报(医学版), 2016, 48(5): 771-776.
[15] 陈小梅,李富强,严速,吴小翠,唐翠兰. 尼古丁减轻高脂高果糖诱导的非酒精性脂肪性肝炎小鼠的肝脏炎症[J]. 北京大学学报(医学版), 2016, 48(5): 777-782.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!