北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (2): 303-309. doi: 10.3969/j.issn.1671-167X.2017.02.021

• 论著 • 上一篇    下一篇

荧光及磁示踪法观测脑组织液的引流分区特征

赵越1,2,3,李昀倩2,3,李怀业1,2,3,李玉亮4,刘兰祥5,袁兰2△,张殊佳1△,韩鸿宾3,6△   

  1. (1. 大连大学环境与化学工程学院,辽宁大连116622; 2. 北京大学医药卫生分析中心,北京100191; 3. 北京市磁共振成像设备与技术重点实验室,北京100191; 4. 山东大学第二医院介入科,济南250033; 5. 秦皇岛市第一医院磁共振室,河北秦皇岛066000; 6.北京大学第三医院放射科,北京100191)
  • 出版日期:2017-04-18 发布日期:2017-04-18
  • 通讯作者: 袁兰,张殊佳,韩鸿宾 E-mail:hanhongbin@bjmu.edu.cn, yuan_lan@bjmu.edu.cn, shujiazhang@163.com
  • 基金资助:

    国家自然科学基金(91330103、81471633)、中国博士后科学基金(2015M570901)、博士点优先发展领域基金(20130001130013)和北京大学第三医院院重点项目(BYSY201301)资助

Drainage characteristic of the brain interstitial fluid detected by using fluorescence and magnetic tracer method

ZHAO Yue1,2,3, LI Yun-qian2,3, LI Huai-ye1,2,3, LI Yu-liang4, LIU Lan-xiang5, YUAN Lan2△, ZHANG Shu-jia1△, #br# HAN Hong-bin3,6△   

  1. (1. College of Environment and Chemical Engineering, Dalian University, Dalian 116622, Liaoning, China; 2. Peking University Medical and Health Analysis Center, Beijng 100191, China; 3. Beijing Key Lab of Magnetic Resonance Imaging Device and Technique, Beijing 100191, China; 4. Department of Intervention, Second Hospital of Shandong University, Jinan 250033, China; 5. Department of Magnetic Resonace Imaging, Qinghuangdao First Hospital, Qinhuangdao 066000, Hebei, China; 6. Radiology Department, Peking University Third Hospital, Beijing 100191, China)
  • Online:2017-04-18 Published:2017-04-18
  • Contact: YUAN Lan, ZHANG Shu-jia, HAN Hong-bin E-mail:hanhongbin@bjmu.edu.cn, yuan_lan@bjmu.edu.cn, shujiazhang@163.com
  • Supported by:

    Supported by the National Natural Science Foundation of China (91330103, 81471633), China Postdoctoal Science Foundation (2015M570901), Doctoral Degree Priority Development Fund(20130001130013) and Key Project of Peking University Third Hospital (BYSY201301).

摘要:

目的:对比光、磁两种探针示踪显示脑组织间隙(interstitial space, ISS)内分子扩散与团流运动的结果,研究脑组织液(interstitial fluid, ISF)在ISS内的分区引流特征。方法: 36只 SD大鼠随机分为荧光检查组(18只)和磁示踪组(18只),每组再随机分为尾状核(caudate nucleus, Cn)、丘脑(thalamus, T)和黑质(substantia nigra, Sn)3个亚组,每亚组6只。荧光检查组:参考脑立体定位图谱,选取冠状位苍白球为中心层面,以Cn、T和Sn为靶点进行穿刺定位,分别导入2 μL 10 mmol/L荧光黄(lucifer yellow,LY)于相应脑区的中心位置,于Cn 3 h、T 2 h和Sn 1 h对大鼠用4%(体积分数)多聚甲醛进行心脏灌注固定后,将取出的鼠脑置于脑切片模具中,沿视交叉向后切片,以进针位点所在的冠状切片为中心层面,计为1片,前取3片,后取2片,每片厚约1 mm,共6片待检测,应用激光扫描共聚焦显微镜(laser scanning confocal microscope,LSCM)对离体切片进行采集,测量离体切片LY扩散的面积;磁示踪组大鼠也以Cn、T和Sn为靶点进行穿刺定位导入2 μL 10 mmol/L钆喷酸葡胺(gadolinium-diethylene triamine pentaacetic acidm,Gd-DTPA), 应用磁共振(magnetic resonance imaging,MRI)动态监测示踪剂在大鼠脑内的扩散,并利用Radiant软件测量Gd-DTPA的扩散面积。结果:LY与Gd-DTPA在Cn、T和Sn的ISS内扩散区域各不相同,Cn亚组LY与Gd-DTPA导入3 h后,比较1~6层LY与Gd-DTPA扩散面积为:(10.95±4.27) mm2 vs. (8.33±2.25) mm2、(18.16±4.74) mm2 vs. (16.42±2.88) mm2、(24.57±3.65) mm2 vs. (20.75±2.29) mm2、(34.81±3.32) mm2 vs. (28.88±1.51) mm2、(30.53±3.12) mm2 vs. (20.92±2.75) mm2、(12.15±4.92) mm2 vs. (10.00±1.89) mm2,对其在每层两组间扩散面积进行t检验,扩散面积差异均无统计学意义(t=0.940,P=0.400;t=0.546,P=0.614;t=1.534,P=0.200;t=2.809,P=0.480;t=2.693,P=0.055;t=0.707,P=0.518);T亚组中LY与Gd-DTPA导入2 h后,比较1~6层LY与Gd-DTPA扩散面积为: (5.56±4.61) mm2 vs. (3.33±2.25) mm2、(16.21±3.36) mm2 vs. (11.42±2.88) mm2、(19.00±5.21) mm2 vs. (15.75±2.29) mm2、(25.32±5.49) mm2 vs. (22.33±3.25) mm2、(17.34±5.31) mm2 vs. (15.92±2.75) mm2、(7.67±6.19) mm2 vs. (5.00±1.89) mm2,对其在每层两组间扩散面积进行t检验,差异均无统计学意义(t=0.753,P=0.493;t=1.875,P=0.134;t=0.990,P=0.378;t=0.810,P=0.464;t=0.413,P=0.701;t=0.716,P=0.514);Sn亚组LY与Gd-DTPA导入1 h后,比较1~6层LY与Gd-DTPA扩散面积为:(6.78±4.56) mm2 vs. (4.75±2.00) mm2、(12.65±5.04) mm2 vs. (10.44±1.13) mm2、(19.51±6.54) mm2 vs. (17.55±0.30) mm2、(28.72±5.45) mm2 vs. (24.48±1.32) mm2、(21.34±4.42) mm2 vs. (17.72±0.25) mm2、(13.00±5.46) mm2 vs. (12.00±2.88) mm2,对其在每层间扩散面积进行t检验,扩散面面积的差异均无统计学意义(t=0.705,P=0.519;t=0.743,P=0.499;t=0.517,P=0.656;t=1.310,P=0.260;t=1.416,P=0.292;t=0.281,P=0.793),但LY扩散面积略大于Gd-DTPA。结论: 荧光法证实了磁示踪法发现的ISF在ISS内的分区引流特征,并且可为磁示踪法提供离体验证的技术与方法。荧光ISS成像法具有更高的对比度和分辨率,得到了更加精细的ISF引流分区区域。

关键词: 脑, 分子探针技术, 显微镜检查, 共焦, 磁共振成像

Abstract:

Objective:Compare the results of molecular diffusion and mass flow in the interstitial space(ISS) displayed by using optical and magnetic probes and study partitioned drainage of the brain interstitial fluid (ISF).Methods: In the study, 36 male SD rats were randomly divided into fluorescent inspection group (18), magnetic tracer group (18). Then they were divided equally into caudate nucleus (Cn), thalamus (T) and substantia nigra (Sn) subgroup, 6 rats in each subgroup. Referencing the brain stereotaxic atlas, the coronal globus pallidus as center level, Cn, T or Sn were acted as puncture positioning target. A 10 μL microsyringe was stereotaxically positioned and the lucifer yellow (LY) solution of 2 μL 10 mmol/L was infused into centric position. The coronary slices undergo cardiac perfusion and fix respectively in time point Cn 3 h, T 2 h and Sn 1 h. The rat brain was placed in rat stainless steel brain matrices and cut backward along visual intersection. The injection point of coronal slice as the center level, take 3 slices in front of the center level and 2 slices behind of it. 1 mm for each slice and 6 slices in total. Then slices were detected by laser scanning confocal microscope (LSCM). Simultaneous, in the same coordinate brain regions of another three groups, a gadolinium-diethylene triamine pentaacetic acidm (Gd-DTPA) solution of 2 μL 10 mmol/L was infused into different injection and detected by MRI tracer-based method. Then the Radiant can be used to measure distribution area of Gd-DTPA. Results: LY and Gd-DTPA have different distribution regions in Cn, T and Sn. After LY and Gd-DTPA were introduced into the Cn subgroup 3 h, compare the 1 to 6 levels distribution area of LY and Gd-DTPA as follows: (10.95±4.27) mm2 vs. (8.33±2.25) mm2, (18.16±4.74) mm2 vs. (16.42±2.88) mm2, (24.57±3.65) mm2 vs. (20.75±2.29) mm2, (34.81±3.32) mm2 vs. (28.88±1.51) mm2, (30.53±3.12) mm2 vs. (20.92±2.75) mm2, (12.15±4.92) mm2 vs. (10.00±1.89) mm2. The statistical analysis of every level was made by T test, and the difference of the distribution area between the two tracers were not statistically significant (t=0.940, P=0.400; t=0.546, P=0.614; t=1.534, P=0.200; t=2.809, P=0.480; t=2.693, P=0.055; t=0.707, P=0.518); After LY and Gd-DTPA were introduced into the T subgroup 2 h, compare the 1-6 levels distribution area of LY and GdDTPA as follows: (5.56±4.61) mm2 vs. (3.33±2.25) mm2, (16.21±3.36) mm2 vs. (11.42±2.88) mm2, (19.00±5.21) mm2 vs. (15.75±2.29) mm2, (25.32±5.49) mm2 vs. (22.33±3.25) mm2, (17.34±5.31) mm2 vs. (15.92±2.75) mm2, (7.67±6.19) mm2 vs. (5.00±1.89) mm2. The statistical analysis of every level was made by T test, and the difference of the distribution area between the two tracers were not statistically significant (t=0.753, P=0.493; t=1.875, P=0.134; t=0.990, P=0.378; t=0.810, P=0.464; t=0.413, P=0.701; t=0.716, P=0.514); After LY and Gd-DTPA were introduced into the Sn subgroup 1 h, compare the 1-6 levels distribution area of LY and Gd-DTPA as follows: (6.78±4.56) mm2 vs. (4.75±2.00) mm2, (12.65±5.04) mm2 vs. (10.44±1.13) mm2, (19.51±6.54) mm2 vs. (17.55±0.30) mm2, (28.72±5.45) mm2 vs. (24.48±1.32) mm2, (21.34±4.42) mm2 vs. (17.72±0.25) mm2, (13.00±5.46) mm2 vs. (12.00±2.88) mm2. The statistical analysis of every level was made by T test and the difference of the distribution area between the two tracers were not statistically significant (t=0.705, P=0.519; t=0.743, P=0.499; t=0.517, P=0.656; t=1.310, P=0.260; t=1.416, P=0.292; t=0.281, P=0.793), but the distribution area of LY is slightly more than Gd-DTPA.Conclusion: LSCM imaging technology confirmed partitioned drainage of the brain ISF found by MRI tracer-based method and provided technology and method validation for MRI tracerbased method. LSCM imaging technology with higher contrast and resolution, therefore more sophisticated partitioned drainage of the brain interstitial fluid were got.

Key words: Brain, Molecular probe techniques, Microscopy, confocal, Magnetic resonance imaging

中图分类号: 

  •  
[1] 邢念增,王明帅,杨飞亚,尹路,韩苏军. 前列腺免活检创新理念的临床实践及其应用前景[J]. 北京大学学报(医学版), 2024, 56(4): 565-566.
[2] 田宇轩,阮明健,刘毅,李德润,吴静云,沈棋,范宇,金杰. 双参数MRI改良PI-RADS评分4分和5分病灶的最大径对临床有意义前列腺癌的预测效果[J]. 北京大学学报(医学版), 2024, 56(4): 567-574.
[3] 李晋娜,许丽娜,李敏,宋怡,张静,贾龙斌. 急性脑梗死患者血清BDNF、IL-18、hs-CRP水平与血管性认知障碍的相关性[J]. 北京大学学报(医学版), 2024, 56(4): 708-714.
[4] 龙仁,毛鑫,高天姿,解倩,谈瀚博,李子寅,韩鸿宾,袁兰. 熊果酸改善精神分裂症小鼠脱髓鞘和脑组织间液引流紊乱[J]. 北京大学学报(医学版), 2024, 56(3): 487-494.
[5] 刘毅,袁昌巍,吴静云,沈棋,肖江喜,赵峥,王霄英,李学松,何志嵩,周利群. 靶向穿刺+6针系统穿刺对PI-RADS 5分患者的前列腺癌诊断效能[J]. 北京大学学报(医学版), 2023, 55(5): 812-817.
[6] 袁昌巍,李德润,李志华,刘毅,山刚志,李学松,周利群. 多参数磁共振成像中动态对比增强状态在诊断PI-RADS 4分前列腺癌中的应用[J]. 北京大学学报(医学版), 2023, 55(5): 838-842.
[7] 刘颖,霍然,徐慧敏,王筝,王涛,袁慧书. 磁共振血管壁成像评估颈动脉中重度狭窄患者斑块特征与脑血流灌注的相关性[J]. 北京大学学报(医学版), 2023, 55(4): 646-651.
[8] 傅强,高冠英,徐雁,林卓华,孙由静,崔立刚. 无症状髋关节前上盂唇撕裂超声与磁共振检查的对比研究[J]. 北京大学学报(医学版), 2023, 55(4): 665-669.
[9] 范常锋,黄亚平,李霞,陈芸,李真,乔淑冬. 以发作性体位性视物双影为前期症状的后循环卒中1例[J]. 北京大学学报(医学版), 2023, 55(4): 762-765.
[10] 于欢,杨若彤,王斯悦,吴俊慧,王梦莹,秦雪英,吴涛,陈大方,武轶群,胡永华. 2型糖尿病患者使用二甲双胍与缺血性脑卒中发病风险的队列研究[J]. 北京大学学报(医学版), 2023, 55(3): 456-464.
[11] 叶珊,金萍萍,张楠,邬海博,石林,赵强,杨坤,袁慧书,樊东升. 肌萎缩侧索硬化患者认知功能改变与脑皮层厚度分析[J]. 北京大学学报(医学版), 2022, 54(6): 1158-1162.
[12] 蔡颖,万巧琴,蔡宪杰,高亚娟,韩鸿宾. 光生物调节加速脑组织间液引流及其机制[J]. 北京大学学报(医学版), 2022, 54(5): 1000-1005.
[13] 陈素华,杨军,陈新,杨辰龙,孙建军,林国中,于涛,杨欣,韩芸峰,吴超,司雨,马凯明. 大型、巨大型上矢状窦中后1/3侵犯颅外复发脑膜瘤的手术治疗[J]. 北京大学学报(医学版), 2022, 54(5): 1006-1012.
[14] 陆林,刘晓星,袁凯. 中国脑科学计划进展[J]. 北京大学学报(医学版), 2022, 54(5): 791-795.
[15] 杜燕燕,王健,贺兰,季丽娜,徐樨巍. 儿童川崎病合并轻微脑炎/脑病伴可逆性胼胝体压部病变综合征1例并文献复习[J]. 北京大学学报(医学版), 2022, 54(4): 756-761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!