北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (5): 872-877. doi: 10.3969/j.issn.1671-167X.2017.05.023

• 论著 • 上一篇    下一篇

乙酰水杨酸对牙龈干细胞免疫调节功能的促进作用

杨瑞莉, 余婷婷, 周彦恒   

  1. 北京大学口腔医学院·
    口腔医院,正畸科 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081
  • 收稿日期:2016-10-10 出版日期:2017-10-18 发布日期:2017-10-18
  • 基金资助:
    国家国际科技合作专项基金(2015DFB30040)和国家自然科学基金(81600865、81470717)资助

Acetylsalicylic acid treatment enhanced immunomodulatory function of mesenchymal stem cells derived from gingiva

YANG Rui-li, YU Ting-ting, ZHOU Yan-heng   

  1. Department of Orthodontics, Peking University School and Hospital of Stomatology &
    National Engineering Laboratory for Digital and Material Technology of Stomatology &
    Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2016-10-10 Online:2017-10-18 Published:2017-10-18
  • Supported by:
    Supported by International Science & Technology Cooperation Program of China (2015DFB30040)and the National Natural Science Foundation of China (81600865, 81470717)

摘要: 目的 检测乙酰水杨酸(acetylsalicylic acid,ASA)对牙龈干细胞(mesenchymal stem cells derived from gingiva,GMSCs)免疫调节功能的影响,初步探索乙酰水杨酸对干细胞治疗免疫相关疾病疗效的提高作用及机制。方法 通过流式细胞仪分析ASA对GMSCs干细胞表面标志分子CD146、CD105、CD90、CD34 和 CD45的影响,通过BrdU掺入法以及MTT细胞实验检测GMSCs增殖率。建立 GMSCs与T细胞体外共培养系统,通过流式细胞仪分析细胞凋亡并用酶联免疫吸附测定法(enzyme linked immunosorbent assay,ELISA)检测相关炎症因子。进一步建立硫酸葡聚糖(dextran sulfate sodium,DSS)诱导性小鼠肠炎模型,通过追踪小鼠体重等临床表现以及结肠病理组织切片,研究GMSCs注射对DSS诱导肠炎的治疗作用,以研究ASA对GMSCs免疫调节功能的促进作用,并进一步探索其分子机制。结果 ASA促进GMSCs增殖并调高CD146及CD105等干细胞表面标记分子在GMSCs的表达。GMSCs与T细胞共培养中,GMSCs诱导T细胞凋亡,ASA可以增强GMSCs诱导T细胞凋亡,同时抑制T细胞分泌炎症因子干扰素γ和肿瘤坏死因子α。GMSCs注射对DSS诱导性小鼠肠炎具有治疗作用,表现为小鼠体重下降减缓、肠炎临床指数降低、结肠组织切片HE染色显示炎性细胞浸润减少及病理指数降低,ASA可以促进GMSCs注射治疗小鼠肠炎疗效。分子机制上,ASA通过调高Fas/FasL信号通路FasL的表达促进GMSCs诱导T细胞凋亡。结论 ASA增强GMSCs免疫调节功能,促进GMSCs对小鼠诱导性肠炎的治疗作用。

关键词: 阿司匹林, 牙龈, 间充质干细胞, 免疫调节

Abstract: Objective: To analyze the role of acetylsalicylic acid (ASA) in immunomodulation of me-senchymal stem cells derived from gingiva (GMSCs), and to explore the role of ASA in enhancing the immumomodulation of GMSCs and the capacity of GMSCs to treat immune disorders and the underlying mechanism. Methods: Flow cytometry analysis were used to analyze the role of ASA in the expression of stem cells surface markers CD146, CD105, CD90, CD34 and CD45 in GMSCs,and the GMSCs proliferation was analyzed by 5-bromo-2-deoxyuridine (BrdU) staining and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The GMSCs and T cells co-culture system was established to analyze the role of ASA in immunomodulation of GMSCs by measuring T cell apoptosis using flow cytometry analysis and inflammatory cytokines using enzyme linked immunosorbent assay (ELISA). Further more, the dextran sulfate sodium (DSS) induced colitis mouse model was established and the mouse body weight, disease activity score, histological index and pathological change of colons were analyzed after GMSC infusion. Results: The proliferation of GMSCs and the expressions of CD105, CD146 in GMSCs were increased after ASA treatment. In the GMSCs and T cells co-culture system, GMSCs induced T cells apoptosis and inhibited interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) secretion by T cells, which were enhanced by ASA treatment. In vivo, GMSCs infusion could ameliorate DSS-induced colitis, including inhibited DSS-induced mouse body weight loss, decreased disease activity score and histological index, and decreased inflammation cells infiltration in colons, as shown by hematoxylin-eosin (HE) staining. Moreover, the therapeutic effects of GMSC infusion on DSS-induced colitis could be enhanced by ASA treatment. Mechanically, ASA treatment increased FasL expression of Fas/FasL death pathway in GMSCs to induce T cells apoptosis. Conclusion: ASA enhanced immunomodulation of GMSCs and increased the capacity of GMSCs to ameliorate DSS-induced colitis in mice.

Key words: Aspirin, Mesenchymal stem cells, Gingiva, Immunomodulation

中图分类号: 

  • R392.12
[1] Zhang Q, Shi S, Liu Y, et al. Mesenchymal stem cells derived from human gingiva are capable of immunomodulatory functions and ameliorate inflammation-related tissue destruction in experimental colitis [J]. J Immunol, 2009, 4(11): 7787-7798.
[2] 杜令倩,杨丕山, 葛少华. 人牙龈干细胞的分离鉴定及基质细胞衍生因子-1对其趋化效应的研究 [J]. 华西口腔医学杂志,2016, 3(33): 238-241.
[3] Yamaza T, Miura Y, Bi Y, et al. Pharmacologic stem cell based intervention as a new approach to osteoporosis treatment in rodents [J]. PLoS One, 2008, 3(7): e2615.
[4] Liu Y, Wang L, Kikuiri T, et al.Mesenchymal stem cell-based tissue regeneration is governed by recipient T lymphocytes via IFN-gamma and TNF-alpha [J]. Nat Med, 2011, 17(12): 1594-1601.
[5] Chen C, Akiyama K, Yamaza T, et al. Telomerase governs immunomodulatory properties of mesenchymal stem cells by regulating FAS ligand expression [J]. EMBO Mol Med, 2014, 6(3): 322-334.
[6] Liu Y, Chen C, Liu, S et al. Acetylsalicylic acid treatment improves differentiation and immunomodulation of SHED [J]. J Dent Res, 2015, 94 (1): 209-218.
[7] Chapple IL, Van der Weijden F, Doerfer C, et al. Primary prevention of periodontitis: managing gingivitis[J]. J Clin Periodontol, 2015, 42(Suppl. 16): 71-76.
[8] Xu X, Chen C, Akiyama K, et al. Gingivae contain neural-crest-and mesoderm-derived mesenchymal stem cells[J]. J Dent Res, 2013, 92(9): 825-832.
[9] Sun L, Akiyama K, Zhang H, et al. Mesenchymal stem cell transplantation reverses multi-organ dysfunction in systemic lupus erythematosus mice and humans[J]. Stem Cells, 2009, 27(6):1421-1432.
[10] Svobodova E, Krulova M, Zajicova A, et al. The role of mouse mesenchymal stem cells in differentiation of naive T-cells into anti-inflammatory regulatory T-cell or proinflammatory helper T-cell 17 population[J]. Stem Cells Dev, 2012, 21(6): 901-910.
[11] Aggarwal S, Pittenger MF. Human mesenchymal stem cells modulate allogeneic immune cell responses[J]. Blood, 2005, 105(4):1815-1822.
[1] 武志慧, 胡明智, 赵巧英, 吕凤凤, 张晶莹, 张伟, 王永福, 孙晓林, 王慧. miR-125b-5p修饰脐带间充质干细胞对系统性红斑狼疮的免疫调控机制[J]. 北京大学学报(医学版), 2024, 56(5): 860-867.
[2] 卢汉,张建运,杨榕,徐乐,李庆祥,郭玉兴,郭传瑸. 下颌牙龈鳞状细胞癌患者预后的影响因素[J]. 北京大学学报(医学版), 2023, 55(4): 702-707.
[3] 张明露,刘秋萍,巩超,王佳敏,周恬静,刘晓非,沈鹏,林鸿波,唐迅,高培. 阿司匹林用于心血管病一级预防的不同策略比较:一项马尔可夫模型研究[J]. 北京大学学报(医学版), 2023, 55(3): 480-487.
[4] 韩超,周祝兴,陈有荣,董子慧,余家阔. 绵羊外周血间充质干细胞的生物学特性[J]. 北京大学学报(医学版), 2022, 54(6): 1151-1157.
[5] 帅婷,刘娟,郭艳艳,金婵媛. 敲减长链非编码RNA MIR4697HG抑制骨髓间充质干细胞成脂向分化[J]. 北京大学学报(医学版), 2022, 54(2): 320-326.
[6] 袁临天,马利沙,刘润园,齐伟,张栌丹,王贵燕,王宇光. 计算机模拟亚甲基蓝与牙龈卟啉单胞菌部分蛋白的分子对接[J]. 北京大学学报(医学版), 2022, 54(1): 23-30.
[7] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[8] 郜洪宇,孟焕新,侯建霞,黄宝鑫,李玮. 钙结合蛋白在健康牙周组织和实验性牙周炎组织的表达分布[J]. 北京大学学报(医学版), 2021, 53(4): 744-749.
[9] 尤鹏越,刘玉华,王新知,王思雯,唐琳. 脱细胞猪心包膜生物相容性及成骨性能的体内外评价[J]. 北京大学学报(医学版), 2021, 53(4): 776-784.
[10] 轩艳,蔡宇,王啸轩,石巧,邱立新,栾庆先. 牙龈卟啉单胞菌感染对载脂蛋白e基因敲除小鼠动脉粥样硬化的影响[J]. 北京大学学报(医学版), 2020, 52(4): 743-749.
[11] 陈子圆,钟金晟,欧阳翔英,周爽英,谢颖,娄新哲. 牙龈退缩患牙的牙龈厚度评估[J]. 北京大学学报(医学版), 2020, 52(2): 339-345.
[12] 李军,牛占岳,薛艳,石雪迎,张波,王媛. 重度溃疡性结肠炎合并卡波西肉瘤1例并文献综述[J]. 北京大学学报(医学版), 2020, 52(2): 373-377.
[13] 白向松,吕珑薇,周永胜. Tribbles同源蛋白3抑制人脂肪间充质干细胞成脂向分化[J]. 北京大学学报(医学版), 2020, 52(1): 1-9.
[14] 谢静,赵玉鸣,饶南荃,汪晓彤,方滕姣子,李晓霞,翟越,李静芝,葛立宏,王媛媛. 3种口腔颌面部来源的间充质干细胞成血管内皮分化潜能的比较研究[J]. 北京大学学报(医学版), 2019, 51(5): 900-906.
[15] 陈英,刘中宁,李波,姜婷. 阿司匹林缓释微球的制备及体外缓释效果评估[J]. 北京大学学报(医学版), 2019, 51(5): 907-912.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!