北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (2): 381-385. doi: 10.3969/j.issn.1671-167X.2018.02.031

• 综 述 • 上一篇    

队列数据共享的必要性与可行性

杨羽1,赵厚宇2,詹思延1,2△   

  1. (1. 北京大学健康医疗大数据研究中心, 北京100191; 2. 北京大学公共卫生学院流行病与卫生统计学系, 北京100191)
  • 出版日期:2018-04-18 发布日期:2018-04-18
  • 通讯作者: 詹思延 E-mail:siyan-zhan@bjmu.edu.cn
  • 基金资助:
     国家自然科学基金(91646107)、国家重点研发计划(2016YFC0901105)资助

Necessity and feasibility of data sharing of cohort studies#br# #br#

YANG Yu1, ZHAO Hou-yu2, ZHAN Si-yan1,2△   

  1. (1. Center for Data Science in Health and Medicine, Peking University, Beijing 100191, China; 2. Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China)
  • Online:2018-04-18 Published:2018-04-18
  • Contact: ZHAN Si-yan E-mail:siyan-zhan@bjmu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China (91646107) and the National Key Research and Development Plan (2016YFC0901105)

摘要: 近年来,复杂性疾病(例如恶性肿瘤、心脑血管疾病等)逐渐成为现代社会最主要的疾病负担,并造成巨大的健康和经济损失[1]。复杂性疾病的发生是基于生活方式、环境、遗传的相互作用而导致的,探讨此类疾病的发病机制已经成为现代病因学研究的重要课题。队列研究是流行病学最基本的分析性研究设计之一,在病因学研究中具有不可替代的地位和作用。当检验病因假说时,队列研究可以探讨有害暴露的致病作用,而基于人群构建的队列(populationbased cohort)可以用来研究多种暴露因素和多种健康结局的关系,且研究结果具有较好的外推性[2],不仅是解决现代医学一些迫切问题的重要研究手段,也是转化医学研究的重要基础[3]。

关键词: 队列, 数据共享, 中国队列共享平台

Abstract: Cohort study is one of the important epidemiological methods which plays an irreplaceable status and role in etiological study. Using cohort study design, we can accurately and continuously collect genetic and environmental information, and identify and validate omics biomarkers to provide evidences for precision public health and medicine. However, results from a new cohort would not be available for at least ten years, as five years would be needed for funding, planning and enrolment, and another five for following up even the earliest analyses of the most common diseases; results for most cancers would take longer, with an unaffordable budget for many research investigators or institutions. That brings an alternative strategy of using existing cohort studies by sharing data between each other. Data sharing of cohort studies would be beneficial in many ways. Data sharing of cohort studies has the potential to make large samples unattainable in a single study, increase statistical power, enable more accurate and detailed subgroup analysis, increase the generalizability of results. It would also facilitate exchange of experiences and learning from each other, avoid for duplicated research and effectively promote the second use of existing data (i.e. using old data to discover new results). The data sharing would save staff recruitment, follow-up, laboratory analysis of the cost, with a high cost-benefit returns and economies of scale. Data sharing enables cross-validation and repeated verification across different data. Many international research funding agencies or leading research groups have also reached consensus on the principles and goals for promoting the sharing of medical research data. Due to rapid development of cohort studies in the past decades, China already has the basis for data sharing of cohort studies. Unfortunately, most of the existing cohort studies are self-contained, independent, lack of visibility, with insufficient co-operation and data sharing between each other. The academic value of the existing data collected in these cohort studies have not been fully exploited and utilized so far. Therefore, the China Cohort Consortium is trying to establish a multilevel three-dimensional cooperation and data sharing strategy. We hope that it will encourage researchers from public health, clinical and other related fields to work more closely through providing data management, data integration, data interaction, tools development, data repositories and other functions.

Key words: Cohort, Data sharing, China Cohort Consortium

中图分类号: 

  • R195.4
[1] 岳芷涵,韩娜,鲍筝,吕瑾莨,周天一,计岳龙,王辉,刘珏,王海俊. 儿童早期体重指数轨迹与超重风险关联的前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 390-396.
[2] 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98.
[3] 于欢,杨若彤,王斯悦,吴俊慧,王梦莹,秦雪英,吴涛,陈大方,武轶群,胡永华. 2型糖尿病患者使用二甲双胍与缺血性脑卒中发病风险的队列研究[J]. 北京大学学报(医学版), 2023, 55(3): 456-464.
[4] 马涛,李艳辉,陈曼曼,马莹,高迪,陈力,马奇,张奕,刘婕妤,王鑫鑫,董彦会,马军. 青春期启动提前与儿童肥胖类型的关联研究: 基于横断面调查和队列调查[J]. 北京大学学报(医学版), 2022, 54(5): 961-970.
[5] 贺冰洁,刘志科,沈鹏,孙烨祥,陈彬,詹思延,林鸿波. 2011—2020年宁波市鄞州区炎症性肠病发病的流行病学研究[J]. 北京大学学报(医学版), 2022, 54(3): 511-519.
[6] 刘杰,郭超. 正/负性情绪对中国老年人死亡风险影响的前瞻性队列研究[J]. 北京大学学报(医学版), 2022, 54(2): 255-260.
[7] 姚晓莹,刘志科,李宁,马瑞,赵薛飞,张良,许国章,詹思延,方挺. 2015—2019年宁波市0~36月龄婴幼儿癫痫发病的流行病学研究[J]. 北京大学学报(医学版), 2021, 53(3): 485-490.
[8] 刘晓强,杨洋,周建锋,刘建彰,谭建国. 640例单牙种植术对血压和心率影响的队列研究[J]. 北京大学学报(医学版), 2021, 53(2): 390-395.
[9] 刘欢,何映东,刘金波,黄薇,赵娜,赵红薇,周晓华,王宏宇. 血管健康指标对新发心脑血管事件的预测价值:北京血管健康分级标准的初步验证[J]. 北京大学学报(医学版), 2020, 52(3): 514-520.
[10] 孟文颖,黄琬桐,张杰,焦明远,金蕾,靳蕾. 孕早期血清维生素E水平与妊娠期高血压疾病发病风险的关系[J]. 北京大学学报(医学版), 2020, 52(3): 470-478.
[11] 唐迅,张杜丹,刘晓非,刘秋萍,曹洋,李娜,黄少平,窦会东,高培,胡永华. China-PAR脑卒中模型在北方农村人群中预测脑卒中发病风险的应用[J]. 北京大学学报(医学版), 2020, 52(3): 444-450.
[12] 林鸿波,陈奕,沈鹏,李小勇,司亚琴,张杜丹,唐迅,高培. 社区糖尿病患者慢性肾脏病的发病率及其危险因素[J]. 北京大学学报(医学版), 2018, 50(3): 416-421.
[13] 唐迅,张杜丹,何柳,曹洋,王晋伟,李娜,黄少平,窦会东,高培,胡永华. China-PAR模型在北方农村人群中预测动脉粥样硬化性心血管疾病发病风险的应用[J]. 北京大学学报(医学版), 2017, 49(3): 439-445.
[14] 杨志凯, 董捷, 左力. 腹膜透析总水清除量下降速率快是患者死亡的独立危险因素[J]. 北京大学学报(医学版), 2011, 43(6): 844-848.
[15] 何耀. 队列研究设计在临床研究中的应用和相关方法学问题[J]. 北京大学学报(医学版), 2010, 42(6): 713-715.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!