北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (5): 954-958. doi: 10.19723/j.issn.1671-167X.2019.05.027

• 论著 • 上一篇    下一篇

计算机辅助设计虚拟颌位在儿童颞下颌关节强直合并颌骨畸形同期矫治中的应用

陈硕,贺洋,安金刚,张益()   

  1. 北京大学口腔医学院·口腔医院,口腔颌面外科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室, 北京 100081
  • 收稿日期:2017-10-10 出版日期:2019-10-18 发布日期:2019-10-23
  • 通讯作者: 张益 E-mail:zhangyi2000@263.net
  • 基金资助:
    北京大学口腔医院临床新技术新疗法项目(PKUSSNCT-17B07)

Application of computer-aided virtual mandibular position in the simultaneous treatment of children with temporomandibular joint ankylosis and jaw deformity

Shuo CHEN,Yang HE,Jin-gang AN,Yi ZHANG()   

  1. Department of Oral and Maxillofacial Surgery,Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2017-10-10 Online:2019-10-18 Published:2019-10-23
  • Contact: Yi ZHANG E-mail:zhangyi2000@263.net
  • Supported by:
    Supported by the Program for New Clinical Techniques and Therapies of Peking University School and Hospital of Stomatology(PKUSSNCT-17B07)

RICH HTML

  

摘要:

目的:评价计算机辅助下虚拟颌位引导儿童关节强直患者同期矫治颌骨畸形的可行性。方法:回顾2016年1月至2017年6月于北京大学口腔医院颌面外科接受手术治疗的儿童颞下颌关节强直患者。将患者颌骨与牙列的影像数据导入计算机软件,进行虚拟设计,完成肋骨肋软骨移植和颌骨畸形的同期矫治,设计制作数字化咬合导板备用。术中完成关节强直松解后,在数字化咬合导板的引导下使下颌骨就位,并完成肋骨移植。对术前和术后即刻的颏点偏斜程度以及下颌升支高度进行测量,并对测量结果进行统计学分析,评价该方法的可靠性。结果:5例患者符合纳入标准,术前设计的虚拟颌位下颏点至面中线的距离平均为(0.58±0.20) mm,术后测量值为(0.70±0.27) mm,二者差异无统计学意义。虚拟颌位下患侧下颌升支的长度平均为(48.19±3.20) mm,术后测量值为(48.17±3.62) mm,二者差异无统计学意义。结论:在计算机辅助设计的虚拟颌位引导下,能够在重建关节的同时实现颌骨畸形的同期矫治。

关键词: 虚拟颌位, 颞下颌关节, 关节强直, 颌畸形, 计算机辅助设计

Abstract:

Objective: To evaluate the feasibility of computer-aided design virtual mandibular position in the simultaneous treatment of children with temporomandibular joint ankylosis (TMJA) and jaw deformity. Methods: The children with unilateral TMJA were surgically treated from January 2016 to June 2017 in the Department of Oral and Maxillofacial Surgery. The image data of jaw and dentition were imported into the computer software to simulate the surgical procedure. An osteotomy of the affected side was performed to remove ankylosed bone mass. Then the mandible was rotated around the unaffected condyle to eliminate the chin deviation by the virtual plan. An open bite was thus created on the affected side to provide space for vertical midfacial growth. In the virtual mandibular position, the affected ramus was reconstructed with costochondral grafting. Finally, digital occlusal splint was designed and pre-fabricated by 3D printing. During surgery, temporomandibular joint ankylosis was released and mandibular position was guided in place by the digital occlusal splint. In the new mandibular position, costochondral grafting was completed. After the surgery, the occlusal splint was wired to the mandibular dentition and would be gradually adjusted by grinding off the maxillary side to promote downward growth of the maxilla until the open bite was eliminated. The ramus height and chin deviation were measured before and one week after the surgery to validate the method. Comparisons of the measurements were made by means of a repeated-measures analysis of variance (ANOVA) (P=0.05). Pair-wise multiple comparisons were conducted using the Bonferroni correction (P=0.05). Results: Five patients were included in this study. Under the guidance of the digital occlusal splint, the mandible could reach the preoperative designed position smoothly in all the cases. The chin deviations were (0.58±0.20) mm in the virtual plan before surgery, and (0.70±0.27) mm after surgery, which were not significant statistically (P>0.05). The ramus heights on the affected side were (48.19±3.20) mm in the virtual plan before surgery, and (48.17±3.62) mm after surgery, which were not significant statistically (P>0.05). Conclusion: It is feasible and reliable in the simultaneous treatment of TMJA with jaw deformity under the guidance of virtual mandibular position.

Key words: Virtual mandibular position, Temporomandibular joints, Ankylosis, Jaw abnormalities, Computer-aided design

中图分类号: 

  • R782.6

图1

将颌骨CT与牙列CBCT融合"

图2

在计算机辅助下设计截骨线的位置并完成截骨"

图3

虚拟颌位设计"

图4

设计并制作数字咬合导板"

图5

模拟肋骨移植"

图6

在数字导板引导下完成手术"

表1

术前、术前虚拟设计以及术后验证时测量的颏点偏斜及升支高度"

Variable Pre-operation/mm Virtual plan/mm Post-operation/mm P
Ramus height of non-operation side 48.86±2.64a 48.92±2.78a 48.93±2.85a >0.05
Ramus height of operation side 39.87±4.27a 48.19±3.20b 48.17±3.62b <0.05
Chin deviation 6.79±2.32a 0.58±0.20b 0.70±0.27b <0.05

图7

创伤致左颞下颌关节强直3年的男性7岁患儿术前及术后面部相"

[1] Zhang X, Chen M, Wu Y , et al. Management of temporomandi-bular joint ankylosis associated with mandibular asymmetry in infancy[J]. J Craniofac Surg, 2011,22(4):1316-1319.
[2] Kaban LB, Perrott DH, Fisher K . A protocol for management of temporomandibular joint ankylosis[J]. J Oral Maxillofac Surg, 1990,48(11):1145-1151.
[3] Kaban LB, Bouchard C, Troulis MJ . A protocol for management of temporomandibular joint ankylosis in children[J]. J Oral Maxillofac Surg, 2009,67(9):1966-1978.
[4] Perrott DH, Umeda H, Kaban LB . Costochondral graft construction/reconstruction of the ramus/condyle unit: long-term follow-up[J]. Int J Oral Maxillofac Surg, 1994,23(6 Pt 1):321-328.
[5] Padwa BL, Mulliken JB, Maghen A , et al. Midfacial growth after costochondral graft construction of the mandibular ramus in hemifacial microsomia[J]. J Oral Maxillofac Surg, 1998,56(2):122-127.
[6] Zhu S, Li J, Luo E , et al. Two-stage treatment protocol for management of temporomandibular joint ankylosis with secondary deformities in adults: our institution’s experience[J]. J Oral Maxillofac Surg, 2011,69(12):e565-572.
[7] Lu C, Huang D, He D , et al. Digital occlusal splint for condylar reconstruction in children with temporomandibular joint ankylosis[J]. J Oral Maxillofac Surg, 2014,72(8):1585-1593.
[8] Sawhney CP . Bony ankylosis of the temporomandibular joint: follow-up of 70 patients treated with arthroplasty and acrylic spacer interposition[J]. Plast Reconstr Surg, 1986,77(1):29-40.
[9] 孙力, 郭亚娟, 赵妍 , 等. 根据CT扫描数据及印模三维重建牙列数字模型精度的初步研究[J]. 口腔颌面修复学杂志, 2011,12(1):6-9.
[10] Besl PJ, Mckay ND . A method for registration of 3-D shapes[J]. IEEE T Pattern Anal, 1992,14(2):239-256.
[11] 赵一姣, 原福松, 谢晓艳 . 牙颌模型激光扫描数据与锥形束CT数据配准方法的精度比较[J]. 中华口腔医学杂志, 2013,48(3):173-176.
[12] Gateno J, Xia JJ, Teichgraeber JF , et al. Clinical feasibility of computer-aided surgical simulation (CASS) in the treatment of complex cranio-maxillofacial deformities[J]. J Oral Maxillofac Surg, 2007,65(4):728-734.
[13] Zhao J, He D, Yang C , et al. 3-D computed tomography measurement of mandibular growth after costochondral grafting in growing children with temporomandibular joint ankylosis and jaw deformity[J]. Oral Surg Oral Med Oral Pathol Oral Radiol, 2017,124(4):333-338.
[14] Kaban LB, Padwa BL, Mulliken JB . Surgical correction of mandibular hypoplasia in hemifacial microsomia: the case for treatment in early childhood[J]. J Oral Maxillofac Surg, 1998,56(5):628-638.
[1] 李红光,韩玮华,吴训,冯继玲,李刚,孟娟红. 关节腔冲洗联合液态浓缩生长因子注射治疗单侧颞下颌关节骨关节炎的初步研究[J]. 北京大学学报(医学版), 2024, 56(2): 338-344.
[2] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[3] 李穗,马雯洁,王时敏,丁茜,孙瑶,张磊. 上前牙种植单冠修复体切导的数字化设计正确度[J]. 北京大学学报(医学版), 2024, 56(1): 81-87.
[4] 罗昊,田福聪,王晓燕. 不同椅旁可切削修复材料序列抛光时间及表面粗糙度与光泽度的比较[J]. 北京大学学报(医学版), 2022, 54(3): 565-571.
[5] 冯莎蔚,国慧,王勇,赵一姣,刘鹤. 乳牙数字化参考牙冠模型的初步构建[J]. 北京大学学报(医学版), 2022, 54(2): 327-334.
[6] 李怡,王丽瑜,刘晓强,周倜,吕季喆,谭建国. 不同材料及厚度椅旁CAD/CAM瓷贴面的边缘特征[J]. 北京大学学报(医学版), 2022, 54(1): 140-145.
[7] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[8] 周境,刘怡. 不同垂直骨面型骨性Ⅱ类青少年女性颞下颌关节锥形束CT测量分析[J]. 北京大学学报(医学版), 2021, 53(1): 109-119.
[9] 韩玮华,罗海燕,郭传瑸,宁琦,孟娟红. 软骨寡聚基质蛋白在颞下颌关节滑膜软骨瘤病中的表达[J]. 北京大学学报(医学版), 2021, 53(1): 34-39.
[10] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[11] 岳兆国,张海东,杨静文,侯建霞. 数字化评估CAD/CAM个性化基台与成品基台影响粘接剂残留的体外研究[J]. 北京大学学报(医学版), 2021, 53(1): 69-75.
[12] 李峥,柳玉树,王时敏,张瑞,贾璐,叶红强,胡文杰,赵文艳,刘云松,周永胜. 数字化方法复制暂时修复体牙合面形态在重度磨耗病例中的应用[J]. 北京大学学报(医学版), 2021, 53(1): 62-68.
[13] 房硕博,杨广聚,康艳凤,孙玉春,谢秋菲. 数字化辅助确定再定位牙合垫颌位方法的探索和精度评价[J]. 北京大学学报(医学版), 2021, 53(1): 76-82.
[14] 罗佳,张宇,崔宏燕,祝宁,沈惠丹,邸萍,林野. 锥度固位结合数字化技术在后牙连续多牙种植即刻修复中的应用[J]. 北京大学学报(医学版), 2020, 52(5): 964-970.
[15] 魏菱,邹东,陈虎,潘韶霞,孙玉春,周永胜. 一种数字化全口义齿的临床疗效评价[J]. 北京大学学报(医学版), 2020, 52(4): 762-770.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!