北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (2): 364-370. doi: 10.19723/j.issn.1671-167X.2021.02.022

• 论著 • 上一篇    下一篇

两种可吸收生物膜联合去蛋白牛骨基质植入犬拔牙窝成骨的影像学评价

王思雯,尤鹏越,刘玉华(),王新知,唐琳,王梅   

  1. 北京大学口腔医学院·口腔医院,修复科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2019-03-19 出版日期:2021-04-18 发布日期:2021-04-21
  • 通讯作者: 刘玉华 E-mail:lyhdentist@163.com

Efficacy of two barrier membranes and deproteinized bovine bone mineral on bone regeneration in extraction sockets: A microcomputed tomographic study in dogs

WANG Si-wen,YOU Peng-yue,LIU Yu-hua(),WANG Xin-zhi,TANG Lin,WANG Mei   

  1. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2019-03-19 Online:2021-04-18 Published:2021-04-21
  • Contact: Yu-hua LIU E-mail:lyhdentist@163.com

摘要:

目的: 建立犬拔牙窝模型,采用影像学分析方法评价拔牙窝内植入去蛋白牛骨基质骨粉颗粒Bio-Oss®(简称Bio-Oss骨粉)并覆盖复层猪小肠黏膜下层膜(multilaminated small intestinal submucosa membrane, mSIS)或可吸收胶原膜Bio-Gide® (简称Bio-Gide膜), 愈合4周和12周后的牙槽窝内成骨效果。方法: 拔除3只比格犬双侧上下颌共计18颗前磨牙的远中根,得到18个拔牙窝,随机平均分为3大组,并分别对各拔牙窝组进行以下操作:(1)植入Bio-Oss骨粉并覆盖mSIS膜(mSIS组),(2)植入Bio-Oss骨粉并覆盖Bio-Gide膜(BG组),(3)自然愈合(空白对照组)。每大组各随机平均分为2个小组,分别于手术后4周和12周取样进行微计算机体层扫描(micro-computed tomograph, Micro-CT), 检测评价各组牙槽窝内新骨的生长情况,比较mSIS膜和Bio-Gide膜对拔牙窝内骨再生的影响。结果: Micro-CT分析显示,mSIS组和BG组在术后4周和12周的新生骨容积比均显著高于空白对照组(P<0.05),其中mSIS组略高于BG组,但两组间差异无统计学意义(P>0.05)。术后4周mSIS组和BG组的牙槽窝冠1/3区域新生骨容积比例显著高于中1/3及根1/3区域(P<0.05)。术后4周各组的新生骨密度值相近(P>0.05),术后12周时mSIS组和BG组的新生骨密度值均显著高于对照组(P<0.05)。术后4周和12周mSIS组和BG组的新生骨小梁的数量以及排列紧凑程度明显优于空白对照组(P<0.05),而mSIS略优于BG组,但两组间差异无统计学意义(P>0.05)。各组间骨小梁厚度的差异无统计学意义(P>0.05)。结论: 两种屏障膜联合去蛋白牛骨基质植入拔牙窝内有利于新骨再生,mSIS膜与Bio-Gide膜的应用效果相似。

关键词: 拔牙, 牙槽骨质丢失, 膜, 引导性骨再生

Abstract:

Objective: To evaluate the effect of two barrier membranes [multilaminated small intestinal submucosa (mSIS) and bioresorable collagen membrane (Bio-Gide)] combined with deproteinized bovine bone mineral Bio-Oss on guided bone regeneration through a canine extraction sockets model. Methods: The distal roots of 18 premolars of the Beagle’s bilateral maxillary and mandibular were removed, and 18 extraction sockets were obtained. They were randomly divided into 3 groups, and the following procedures were performed on the sockets: (1) filled with Bio-Oss and covered by mSIS (mSIS group), (2) filled with Bio-Oss and covered by Bio-Gide (BG group), (3) natural healing (blank control group). Micro-computed tomograph (Micro-CT) was performed 4 and 12 weeks after surgery to eva-luate the new bone regeneration in the sockets of each group. Results: The postoperative healing was uneventful in all the animals, and no complications were observed through the whole study period. Micro-CT analysis showed that the new bone fraction in the mSIS group and the BG group was significantly higher than that in the blank control group at the end of 4 weeks and 12 weeks (P<0.05), and more new bone fraction was observed in the mSIS group than in the BG group, but the difference was not statistically significant (P>0.05). The new bone fraction of coronal third part of the socket in the mSIS group and BG group at the end of 4 weeks were significantly higher than that of the middle and apical third part of each group (P<0.05). The values of bone mineral density were similar at 4 weeks in all the groups (P>0.05), but were significantly higher than that in the control group at the end of 12 weeks (P<0.05). The bone morphometric analysis showed that the trabecular number and trabecular spacing were significantly better in the mSIS group and the BG group than in the control group at the end of 4 weeks and 12 weeks (P<0.05), while the value in the mSIS group was slightly higher than in the BG group, but the difference was not statistically significant (P>0.05). The difference in trabecular thickness between all the groups was not statistically significant (P>0.05). Conclusion: mSIS membrane as a barrier membrane combined with deproteinized bovine bone mineral can enhance new bone formation in canine extraction sockets, similar to Bio-Gide collagen membrane.

Key words: Tooth extraction, Alveolar bone loss, Membranes, Guided bone regeneration

中图分类号: 

  • R782.1

图1

各组拔牙窝的处理方法"

图2

手术步骤"

图3

术后4周牙槽窝新生骨Micro-CT图像(黄色箭头示新生骨,绿色箭头示骨移植材料)"

图4

术后12周牙槽窝新生骨Micro-CT图像(黄色箭头示新生骨,绿色箭头示骨移植材料)"

表1

术后4周及12周各组牙槽窝内新生骨容积比例(%, $\bar{x} \pm s$)"

Items mSIS group BG group Blank control group
4 weeks 42.72±4.76 41.07±2.83 27.06±4.02*#
12 weeks 57.61±4.62 54.16±4.55 32.79±1.60**##

表2

术后4周及12周各组牙槽窝内分区域的新生骨容积比例(%, $\bar{x} \pm s$)"

Items mSIS group BG group Blank control group
BV/TV-1
4 weeks 47.37±3.43 47.17±1.59 27.18±4.21*#
12 weeks 61.29±7.69 59.59±5.66 40.00±4.75*#
BV/TV-2
4 weeks 39.80±2.94 40.43±1.49 26.56±3.86*#
12 weeks 56.36±3.12 57.31±9.08 28.38±4.72*#
BV/TV-3
4 weeks 38.00±6.86 37.21±4.26 25.92±1.75*#
12 weeks 52.38±1.48 53.20±3.90 28.54±6.81*#

表3

术后4周、12周各组牙槽窝内新生骨密度(mgHA/mm3, $\bar{x} \pm s$)"

Items mSIS group BG group Blank control group
4 weeks 846.38±8.82 846.10±18.36 830.38±15.55
12 weeks 1 043.30±19.23 1 042.87±19.95 980.45±5.97*#

表4

术后4周及12周各组牙槽窝内骨形态学分析(mm, $\bar{x} \pm s$)"

Items mSIS group BG group Blank control group
Tb.N
4 weeks 6.392±0.450 6.975±0.260 1.947±0.320**##
12 weeks 10.060±0.560 9.090±0.540 2.850±0.600**##
Tb.Sp
4 weeks 0.031±0.009 0.041±0.006 0.313±0.067**##
12 weeks 0.021±0.003 0.022±0.004 0.193±0.015**##
Tb.Th
4 weeks 0.079±0.006 0.076±0.009 0.065±0.009
12 weeks 0.106±0.016 0.098±0.011 0.099±0.012
[1] Ersanli S, Olgac V, Leblebicioglu B. Histologic analysis of alveolar bone following guided bone regeneration[J]. J Periodontol, 2004,75(5):750-756.
doi: 10.1902/jop.2004.75.5.750 pmid: 15212358
[2] Chiapasco M, Zaniboni M. Clinical outcomes of GBR procedures to correct peri-implant dehiscences and fenestrations: a systematic review[J]. Clin Oral Implants Res, 2009,20(Suppl 4):113-123.
[3] Oikarinen KS, Sandor GK, Kainulainen VT, et al. Augmentation of the narrow traumatized anterior alveolar ridge to facilitate dental implant placement[J]. Dent Traumatol, 2003,19(1):19-29.
pmid: 12656851
[4] Amler MH. The time sequence of tissue regeneration in human extraction wounds[J]. Oral Surg Oral Med Oral Pathol, 1969,27(3):309-318.
pmid: 5251474
[5] Nyman S, Lang NP, Buser D, et al. Bone regeneration adjacent to titanium dental implants using guided tissue regeneration: a report of two cases[J]. Int J Oral Maxillofac Implants, 1990,5(1):9-14.
pmid: 2391139
[6] MacBeth N, Trullenque-Eriksson A, Donos N, et al. Hard and soft tissue changes following alveolar ridge preservation: a syste-matic review[J]. Clin Oral Implants Res, 2017,28(8):982-1004.
doi: 10.1111/clr.12911 pmid: 27458031
[7] 詹雅琳, 胡文杰, 甄敏, 等. 去蛋白牛骨基质与可吸收胶原膜的磨牙拔牙位点保存效果影像学评价[J]. 北京大学学报(医学版), 2015,47(1):19-26.
[8] Kim JJ, Schwarz F, Song HY, et al. Ridge preservation of extraction sockets with chronic pathology using Bio-Gide® Collagen with or without collagen membrane: an experimental study in dogs[J]. Clin Oral Implants Res, 2017,28(6):727-733.
doi: 10.1111/clr.12870 pmid: 27194177
[9] Wu W, Li B, Liu Y, et al. Effect of multilaminate small intestinal submucosa as a barrier membrane on bone formation in a rabbit mandible defect model[J]. Biomed Res Int, 2018,2018:3270293.
pmid: 30018978
[10] 吴唯伊, 李博文, 刘玉华, 等. 复层猪小肠黏膜下层可吸收膜的降解性能[J]. 北京大学学报(医学版), 2020,52(3):564-569.
[11] Eitel F, Klapp F, Jacobson W, et al. Bone regeneration in animals and in man. A contribution to understanding the relative value of animal experiments to human pathophysiology[J]. Arch Orthop Trauma Surg, 1981,99(1):59-64.
pmid: 7316703
[12] Lindhe J, Araujo MG, Bufler M, et al. Biphasic alloplastic graft used to preserve the dimension of the edentulous ridge: an experimental study in the dog[J]. Clin Oral Implants Res, 2013,24(10):1158-1163.
pmid: 22804845
[13] Naenni N, Sapata V, Bienz SP, et al. Effect of flapless ridge preservation with two different alloplastic materials in sockets with buccal dehiscence defects-volumetric and linear changes[J]. Clin Oral Investig, 2018,22(6):2187-2197.
doi: 10.1007/s00784-017-2309-6 pmid: 29280075
[14] 詹雅琳, 胡文杰, 徐涛, 等. 罹患重度牙周炎磨牙拔除后应用去蛋白牛骨基质与可吸收胶原膜进行位点保存的组织学研究[J]. 北京大学学报(医学版), 2017,49(1):169-175.
[15] Benic GI, Thoma DS, Sanz-Martin I, et al. Guided bone regene-ration at zirconia and titanium dental implants: a pilot histological investigation[J]. Clin Oral Implants Res, 2017,28(12):1592-1599.
doi: 10.1111/clr.13030 pmid: 28653343
[16] Wang F, Li Q, Wang Z. A comparative study of the effect of Bio-Gide® in combination with concentrated growth factors or bone marrow-derived mesenchymal stem cells in canine sinus grafting[J]. J Oral Pathol Med, 2017,46(7):528-536.
pmid: 27682609
[17] Turri A, Elgali I, Vazirisani F, et al. Guided bone regeneration is promoted by the molecular events in the membrane compartment[J]. Biomaterials, 2016,84:167-183.
pmid: 26828682
[18] Bouxsein ML, Boyd SK, Christiansen BA, et al. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography[J]. J Bone Miner Res, 2010,25(7):1468-1486.
pmid: 20533309
[19] Leventis M, Fairbairn P, Mangham C, et al. Bone healing in rabbit calvaria defects using a synthetic bone substitute: A histological and micro-CT comparative study[J]. Materials (Basel), 2018,11(10):1-13.
[20] Sun Y, Wang CY, Wang ZY, et al. Test in canine extraction site preservations by using mineralized collagen plug with or without membrane[J]. J Biomater Appl, 2016,30(9):1285-1299.
pmid: 26721867
[21] Omar O, Dahlin A, Gasser A, et al. Tissue dynamics and rege-nerative outcome in two resorbable non-cross-linked collagen memb-ranes for guided bone regeneration: A preclinical molecular and histological study in vivo[J]. Clin Oral Implants Res, 2018,29(1):7-19.
pmid: 28703398
[1] 孙菲,李思琪,危伊萍,钟金晟,王翠,胡文杰. 种植体周病非手术治疗中联合应用甘氨酸粉喷砂的临床效果评价[J]. 北京大学学报(医学版), 2022, 54(1): 119-125.
[2] 孟广艳,张筠肖,张渝昕,刘燕鹰. IgG4相关性疾病中枢神经系统受累的临床特点分析[J]. 北京大学学报(医学版), 2021, 53(6): 1043-1048.
[3] 罗靓,霍文岗,张钦,李春. 类风湿关节炎合并角膜溃疡的临床特点和相关因素分析[J]. 北京大学学报(医学版), 2021, 53(6): 1032-1036.
[4] 贾睿璇,姜尚伟,赵琳,杨丽萍. Cyp4v3基因敲除小鼠模型的表型分析[J]. 北京大学学报(医学版), 2021, 53(6): 1099-1106.
[5] 白鹏,王涛,周阳,陶立元,李刚,李正迁,郭向阳. 不同转流标准对颈动脉内膜切除术后脑梗死的影响[J]. 北京大学学报(医学版), 2021, 53(6): 1144-1151.
[6] 穆东亮,薛铖,安彬,王东信. 硬膜外阻滞与结直肠癌患者术后远期生存状态的关系:一项倾向性评分匹配的回顾性研究[J]. 北京大学学报(医学版), 2021, 53(6): 1152-1158.
[7] 郜洪宇,孟焕新,侯建霞,黄宝鑫,李玮. 钙结合蛋白在健康牙周组织和实验性牙周炎组织的表达分布[J]. 北京大学学报(医学版), 2021, 53(4): 744-749.
[8] 尤鹏越,刘玉华,王新知,王思雯,唐琳. 脱细胞猪心包膜生物相容性及成骨性能的体内外评价[J]. 北京大学学报(医学版), 2021, 53(4): 776-784.
[9] 林国中, 马长城, 王振宇, 谢京城, 刘彬, 陈晓东. 1~2硬膜外神经鞘瘤的显微微创治疗[J]. 北京大学学报(医学版), 2021, 53(3): 586-589.
[10] 周培茹, 蒋析, 华红. 口腔黏膜病患者口腔种植的时机及注意事项[J]. 北京大学学报(医学版), 2021, 53(1): 5-8.
[11] 韩玮华,罗海燕,郭传瑸,宁琦,孟娟红. 软骨寡聚基质蛋白在颞下颌关节滑膜软骨瘤病中的表达[J]. 北京大学学报(医学版), 2021, 53(1): 34-39.
[12] 张庆芬,赵红,冯艺. 不同全身麻醉管理方式与早产儿眼底手术临床结局[J]. 北京大学学报(医学版), 2021, 53(1): 195-199.
[13] 池彦廷,张延平,张秋露,刘翠苓,李斌斌. 唾液腺干燥综合征继发黏膜相关淋巴组织淋巴瘤的临床病理分析[J]. 北京大学学报(医学版), 2021, 53(1): 40-45.
[14] 孙鹿希,刘金晶,侯云霞,李超然,李璐,田新平,曾小峰,郑文洁. 戈利木单抗治疗白塞综合征心脏大血管受累的临床分析[J]. 北京大学学报(医学版), 2020, 52(6): 1056-1062.
[15] 刘世博,高辉,冯元春,李静,张彤,万利,刘燕鹰,李胜光,罗成华,张学武. 腹膜后纤维化致肾盂积水的临床分析:附17例报道[J]. 北京大学学报(医学版), 2020, 52(6): 1069-1074.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田增民, 陈涛, Nanbert ZHONG, 李志超, 尹丰, 刘爽. 神经干细胞移植治疗遗传性小脑萎缩的临床研究(英文稿)[J]. 北京大学学报(医学版), 2009, 41(4): 456 -458 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[4] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[5] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[6] 董稳, 刘瑞昌, 刘克英, 关明, 杨旭东. 氯诺昔康和舒芬太尼用于颌面外科术后自控静脉镇痛的比较[J]. 北京大学学报(医学版), 2009, 41(1): 109 -111 .
[7] 祁琨, 邓芙蓉, 郭新彪. 纳米二氧化钛颗粒对人肺成纤维细胞缝隙连接通讯的影响[J]. 北京大学学报(医学版), 2009, 41(3): 297 -301 .
[8] 李伟军, 邢晓芳, 曲立科, 孟麟, 寿成超. PRL-3基因C104S位点突变体和CAAX缺失体的构建及表达[J]. 北京大学学报(医学版), 2009, 41(5): 516 -520 .
[9] 丰雷, 王玉凤, 曹庆久. 哌甲酯对注意缺陷多动障碍儿童平衡功能影响的开放性研究[J]. 北京大学学报(医学版), 2007, 39(3): 304 -309 .
[10] 刘津, 王玉凤. 父母培训对共患对立违抗性障碍的注意缺陷多动障碍的作用[J]. 北京大学学报(医学版), 2007, 39(3): 310 -314 .