北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (4): 721-727. doi: 10.19723/j.issn.1671-167X.2021.04.017
马向波1,2,张学武1,贾汝琳1,高颖3,刘洪江1,刘玉芳1,4,李英妮1,Δ()
MA Xiang-bo1,2,ZHANG Xue-wu1,JIA Ru-lin1,GAO Ying3,LIU Hong-jiang1,LIU Yu-fang1,4,LI Ying-ni1,Δ()
摘要:
目的: 检测免疫抑制剂治疗中系统性硬化症 (systemic sclerosis, SSc) 患者外周血T淋巴细胞、B淋巴细胞及自然杀伤 (natural killer,NK) 细胞的表达水平,分析其与临床实验室指标之间的相关性,进而探讨外周血淋巴细胞亚群检测在SSc治疗中的意义。方法: 采用流式细胞术检测使用免疫抑制剂的32例SSc患者(SSc组)和 30例健康对照(healthy control,HC)组外周血T、CD4+T、CD8+T、B、NK细胞数量及比例,比较SSc组与HC组外周血淋巴细胞亚群的差异,分析外周血淋巴细胞亚群与SSc其他实验室及临床指标之间的相关性。结果: 与HC组相比,SSc组中T、CD4+T、CD8+T、B、NK细胞数量均明显减少 (P<0.05), 同时,NK细胞占淋巴细胞的百分比也明显降低(P=0.004); 此外,使用免疫抑制剂的SSc患者中65%以上外周血存在各淋巴细胞亚群细胞数量减少。CD4+T淋巴细胞数量降低组与正常组相比,其出现雷诺现象的比例明显升高(P=0.024), 红细胞沉降率和C-反应蛋白也明显升高(P<0.001,P=0.018); CD8+T淋巴细胞数量降低组与正常组相比,红细胞沉降率明显升高(P=0.022);B淋巴细胞数量降低组与正常组相比,发生指尖溃疡的风险明显增高(P=0.019); NK细胞数量降低组与正常组相比,发生指尖溃疡的风险明显增高(P=0.033),而体内免疫球蛋白(immunoglobulin,Ig)M水平明显降低(P=0.049)。相关性分析可见,红细胞沉降率与总T淋巴细胞(r=-0.455,P=0.009)、CD4+T淋巴细胞(r=-0.416,P=0.018)、CD8+T淋巴细胞(r=-0.430,P=0.014)、B细胞(r=-0.366,P=0.039)数量呈负相关。结论: +T、CD8+T、B及NK细胞数量明显减少,某些淋巴细胞亚群的变化可能与雷诺现象、指尖溃疡的发生有关,与红细胞沉降率、C-反应蛋白呈明显负相关,使用免疫抑制剂治疗SSc中应定期检测外周血淋巴细胞亚群的细胞数量。
中图分类号:
[1] |
Denton CP, Khanna D. Systemic sclerosis [J]. Lancet, 2017, 390(10103):1685-1699.
doi: 10.1016/S0140-6736(17)30933-9 |
[2] |
Tyndall AJ, Bannert B, Vonk M, et al. Causes and risk factors for death in systemic sclerosis: A study from the EULAR Scleroderma Trials and Research (EUSTAR) database [J]. Ann Rheum Dis, 2010, 69(10):1809-1815.
doi: 10.1136/ard.2009.114264 |
[3] |
van den Hoogen F, Khanna D, Fransen J, et al. Classification criteria for systemic sclerosis: An American college of rheumatology/European league against rheumatism collaborative initiative [J]. Ann Rheum Dis, 2013, 72(11):1747-1755.
doi: 10.1136/annrheumdis-2013-204424 pmid: 24092682 |
[4] |
Bossini-Castillo L, Martin JE, Broen J, et al. Confirmation of TNIP1 but not RHOB and PSORSICI as systemic sclerosis risk factors in a large independent replication study [J]. Ann Rheum Dis, 2013, 72(4):602-607.
doi: 10.1136/annrheumdis-2012-201888 pmid: 22896740 |
[5] | Marou E, Liaskos C, Efthymiou G, et al. Increased immunoreactivity against human cytomegalovirus UL83 in systemic sclerosis [J]. Clin Exp Rheumatol, 2017, 35(Suppl 106):31-34. |
[6] |
Marie I, Gehanno JF, Bubenheim M, et al. Systemic sclerosis and exposure to heavy metals: A case control study of 100 patiens and 300 controls [J]. Autoimmun Rev, 2017, 16(3):223-230.
doi: S1568-9972(17)30014-9 pmid: 28137480 |
[7] |
Borghini A, Poscia A, Bosello S, et al. Environmental pollution by benzene and PM10 and clinical manifestation of systemic sclerosis:A correlation study [J]. Int J Environ Res Public Health, 2017, 14(11):1297.
doi: 10.3390/ijerph14111297 |
[8] |
Joseph CG, Darrah E, Shah AA, et al. Association of the autoimmune disease scleroderma with an immunologic response to cancer [J]. Science, 2014, 343(6167):152-157.
doi: 10.1126/science.1246886 |
[9] |
Cipriani P, Marrelli A, Liakouli V, et al. Cellular players in angiogenesis during the course of systemic sclerosis [J]. Autoimmu Rev, 2011, 10(10):641-646.
doi: 10.1016/j.autrev.2011.04.016 |
[10] |
Walker UA, Tyndall A, Czirjak L, et al. Clinical risk assessment of organ manifestations in systemic sclerosis: A report from the EULAR scleroderma trials and research group database [J]. Ann Rheum Dis, 2007, 66(6):754-763.
pmid: 17234652 |
[11] |
Matucci-Cerinic M, Kahaleh B, Wigley FM. Review: Evidence that systemic sclerosis is a vascular disease [J]. Arthritis Rheum, 2013, 65(8):1953-1962.
doi: 10.1002/art.37988 |
[12] |
Liu M, Wu W, Sun X, et al. New insights into CD4+ T cell abnormalities in systemic sclerosis [J]. Cytokine Growth Factor Rev, 2016, 28:31-36.
doi: 10.1016/j.cytogfr.2015.12.002 |
[13] |
Yang XQ, Yang J, Xing XJ, et al. Increased frequency of Th17 cells in systemic sclerosis is related to disease activity and collagen overproduction [J]. Arthritis Res Ther, 2014, 16(1):R4.
doi: 10.1186/ar4430 |
[14] | Yoshizaki A, Yanaba K, Iwata Y, et al. Cell adhesion molecules regulate fibrotic process via Th1/Th2/Th17 cell balance in a bleomycin-induced scleroderma model [J]. Immunology, 2010, 185(4):2502-2515. |
[15] |
Bogoch ER, Gross DK. Surgery of the hand in patients with systemic sclerosis: outcomes and considerations [J]. Rheumatology, 2005, 32(4):642-648.
doi: 10.1093/rheumatology/32.7.642 |
[16] |
Sakkas LI, Boqdanos DP. Systemic sclerosis: new evidence reenforces the role of B cells [J]. Autoimmu Rev, 2016, 15(2):155-161.
doi: 10.1016/j.autrev.2015.10.005 |
[17] |
Yoshizaki A. Pathogenic roles of B lymphocytes in systemic sclerosis [J]. Immunol Lett, 2018, 195:76-82.
doi: S0165-2478(17)30430-3 pmid: 29307688 |
[18] |
Wang MH, Chandra M. B-cells in systemic sclerosis: Emerging evidence from genetics to phenotypes [J]. Curr Opin Rheumatol, 2015, 27(6):537-541.
doi: 10.1097/BOR.0000000000000215 |
[19] |
Dumoitier N, Chaigne B, Régent A, et al. Scleroderma peripheral B lymphocytes secrete interleukin-6 and transforming growth factor β and activate fibroblasts [J]. Arthritis Rheumatol, 2017, 69(5):1078-1089.
doi: 10.1002/art.v69.5 |
[20] |
Katz P, Mitchell SR, Cupps TR, et al. Suppression of B cell responses by natural killer cells is mediated through direct effects on T cells [J]. Cell Immunol, 1989, 119(1):130-142.
pmid: 2784076 |
[21] |
Fullard N, O’Reilly S. Role of innate immune system in systemic sclerosis [J]. Semin Immunopathol, 2015, 37(5):511-517.
doi: 10.1007/s00281-015-0503-7 pmid: 26159672 |
[22] |
Cossu M, van Bon L, Nierkens S, et al. The magnitude of cytokine production by stimulated CD56+ cells is associated with early stages of systemic sclerosis [J]. Clin Immunol, 2016, 173:76-80.
doi: 10.1016/j.clim.2016.09.004 |
[1] | 田佳宜, 郭一学, 张霞, 孙晓麟, 何菁. 中国健康成人外周血自然杀伤细胞及其亚群的正常值范围流式细胞学分析[J]. 北京大学学报(医学版), 2024, 56(5): 839-844. |
[2] | 柴晓东,孙子文,李海爽,朱靓怡,刘小旦,刘延涛,裴斐,常青. 髓母细胞瘤分子亚型中CD8+T淋巴细胞浸润的临床病理特点[J]. 北京大学学报(医学版), 2024, 56(3): 512-518. |
[3] | 李文根,古晓东,翁锐强,刘苏东,陈超. 血浆外泌体miR-34-5p和miR-142-3p在系统性硬化症中的表达及临床意义[J]. 北京大学学报(医学版), 2023, 55(6): 1022-1027. |
[4] | 赵祥格,刘佳庆,黄会娜,陆智敏,白自然,李霞,祁荆荆. 干扰素-α介导系统性红斑狼疮外周血CD56dimCD57+自然杀伤细胞功能的损伤[J]. 北京大学学报(医学版), 2023, 55(6): 975-981. |
[5] | 林卓华,蔡如意,孙洋,穆荣,崔立刚. 超微血流显像评价系统性硬化症指端血流的方法学与临床应用[J]. 北京大学学报(医学版), 2023, 55(4): 636-640. |
[6] | 罗靓,蔡青猛,刘香君,贠泽霖,李春,张晓盈. 以雷诺现象为首发表现的系统性硬化症临床特征及其相关因素[J]. 北京大学学报(医学版), 2022, 54(6): 1224-1228. |
[7] | 刘媛,原婉琼,李婷,王平章,吕平,吴利新,阮国瑞,韩文玲,莫晓宁. 敲减CMTM3增加急性B淋巴细胞白血病细胞对伊马替尼敏感性[J]. 北京大学学报(医学版), 2022, 54(6): 1238-1243. |
[8] | 田佳宜,张霞,程功,刘庆红,王世阳,何菁. 系统性红斑狼疮患者血清白细胞介素-2受体α水平及其临床意义[J]. 北京大学学报(医学版), 2021, 53(6): 1083-1087. |
[9] | 赵静,孙峰,李云,赵晓珍,徐丹,李英妮,李玉慧,孙晓麟. 抗α-1C微管蛋白抗体在系统性硬化症中的表达及临床意义[J]. 北京大学学报(医学版), 2020, 52(6): 1009-1013. |
[10] | 朱红林,杜倩,谌威霖,左晓霞,李全贞,刘思佳. 系统性硬化症血清细胞因子表达谱变化及调控机制[J]. 北京大学学报(医学版), 2019, 51(4): 716-722. |
[11] | 肖榆冰,郭慕瑶,左晓霞. 免疫代谢与系统性红斑狼疮[J]. 北京大学学报(医学版), 2018, 50(6): 1120-1124. |
[12] | 周建华,王地,王焕瑞,侯晓利,郁卫东,许克新,胡浩. γδT细胞对膀胱癌细胞的细胞毒活性及MICA/B蛋白在膀胱癌中的表达[J]. 北京大学学报(医学版), 2018, 50(4): 595-601. |
[13] | 陈玮, 胡凡磊, 刘洪江, 徐丽玲, 李英妮, 栗占国. 类风湿关节炎患者髓系来源的抑制细胞促进自身B细胞增殖[J]. 北京大学学报(医学版), 2017, 49(5): 819-823. |
[14] | 刘恩阳, 刘静芳, 邵文威, 肖琳, 李国辉, 昌晓红, 邱晓彦. 肿瘤来源的IgG抑制脐带血中T细胞的增殖[J]. 北京大学学报(医学版), 2017, 49(5): 824-828. |
[15] | 刘静维, 卢戌, 杨照敏, 邓丽娟, 杨林. 负载NY-ESO-1多肽的树突状细胞激发特异性细胞毒性T淋巴细胞反应[J]. 北京大学学报(医学版), 2017, 49(5): 840-846. |
|