北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 942-945. doi: 10.19723/j.issn.1671-167X.2021.05.022

• 论著 • 上一篇    下一篇

腕表式睡眠监测仪与多导睡眠监测的睡眠参数比较和相关性分析

霍阳1,周兵2,何红彦3,赵龙2,张雪丽2,李静2,左玉花2,郑宇1,任正洪4,韩芳2,张俊1,()   

  1. 1.北京大学人民医院神经内科,北京 100044
    2.北京大学人民医院呼吸内科,北京 100044
    3.河北省胸科医院神经内科,石家庄 050041
    4.北京大学公共卫生学院妇幼卫生学系,北京 100191
  • 收稿日期:2020-08-19 出版日期:2021-10-18 发布日期:2021-10-11
  • 通讯作者: 张俊 E-mail:who626@163.com

Comparison and correlation analysis of sleep parameters between watch-type sleep monitor (Actiwatch) and polysomnography

HUO Yang1,ZHOU Bing2,HE Hong-yan3,ZHAO Long2,ZHANG Xue-li2,LI Jing2,ZUO Yu-hua2,ZHENG Yu1,REN Zheng-hong4,HAN Fang2,ZHANG Jun1,()   

  1. 1. Department of Neurology, Peking University People’s Hospital, Beijing 100044, China
    2. Department of Pulmonology, Peking University People’s Hospital, Beijing 100044, China
    3. Department of Neurology, the Chest Hospital of Hebei Provence, Shijiazhuang 050041, China
    4. Department of Maternal and Child Health, Peking University School of Public Health, Beijing 100191, China
  • Received:2020-08-19 Online:2021-10-18 Published:2021-10-11
  • Contact: Jun ZHANG E-mail:who626@163.com

RICH HTML

  

摘要:

目的: 随着睡眠医学的飞速发展,检测睡眠疾病的方法多种多样,各具优势。本研究以“金标准”多导睡眠监测(polysomnography,PSG)的结果为标准,探索在中国人群中使用小巧轻便的腕表式睡眠监测仪(Actiwatch)获得相关指标的可靠性,以期为Actiwatch的临床应用提供依据。方法: 选取北京大学人民医院睡眠中心2018年8月至2019年12月的121例受试者,受试者进行PSG的同时佩戴Actiwatch,并于第2天清晨填写睡眠日志。收集监测获得的指标进行线性相关分析,并用配对t检验比较两者的差异。结果: Actiwatch在低灵敏度条件下,PSG和Actiwatch总睡眠时间(total sleep time,TST)的相关系数为0.53(P<0.05), 配对t检验表明PSG和Actiwatch的TST差异无统计学意义(t=-0.890,P=0.36)。按年龄分层发现,年龄越小,两者的TST相关性越强,系数最高可达0.92(P<0.05), 配对t检验表明两者TST的差异无统计学意义(t=-1.057,P=0.35)。按诊断分层发现,PSG正常组中两者的TST相关系数可高达0.79(P<0.05), 配对t检验表明PSG正常组中两者TST的差异无统计学意义(t=-0.784,P=0.44)。结论: 作为一种可穿戴的居家体动记录仪,腕表式睡眠监测仪Actiwatch的分析参数设定为低灵敏度时,PSG和Actiwatch的TST相关性最高;年龄越小,PSG与Actiwatch的TST相关性越强;PSG正常的受试者PSG和Actiwatch的TST相关性更高。

关键词: 睡眠, 腕表式睡眠监测仪, 体动描记术, 多导睡眠监测

Abstract:

Objective: With the rapid development of sleep medicine, there are various methods for detecting sleep diseases. This study compared the correlation between the lightweight watch-type sleep monitor (Actiwatch) and the “gold standard” polysomnography (PSG) in the Chinese population, in order to provide a basis for clinical application. Methods: From August 2018 to December 2019, 121 subjects who simultaneously performed sleep breathing monitoring (PSG) and wearing a watch-type sleep monitor (Actiwatch) in the Sleep Center of Peking University People’s Hospital were enrolled. All subjects received PSG and Actiwatch at the same time, and filled out the sleep diary next morning. Monitoring indicators were collected for linear correlation analysis and paired t test to compare the differences. Results: Under low sensitivity conditions, the correlation coefficient of total sleep time (TST) between PSG and Actiwatch was 0.53 (P<0.05). Paired t test analysis showed that there was no significant difference between the TSTs of Actiwatch and PSG (t=-0.890, P=0.36). According to age stratification, the smaller the age, the stronger the correlation between the TSTs of Actiwatch and PSG, and the coefficient could be up to 0.92 (P<0.05). Paired t test showed that there was no significant difference between them (t=-1.057, P=0.35). According to the stratification by diagnosis, the correlation coefficient between the TSTs of Actiwatch and PSG in normal PSG group could be as high as 0.79 (P<0.05), the results of paired t test showed that there was no significant difference between the TSTs of Actiwatch and PSG in normal PSG group (t=-0.784, P=0.44). Conclusion: As a wearable home recorder, when the analysis parameters of Actiwatch were set as low sensitivity, PSG and Actiwatch had the highest TST correlation. The younger the age, the stronger correlation between the TSTs of Actiwatch and PSG. The PSG and Actiwatch subjects with normal PSG presentation had a higher TST correlation.

Key words: Sleep, Watch-type sleep monitor, Actigraphy, Polysomnography

中图分类号: 

  • R338.63

表1

PSG与不同灵敏度条件下Actiwatch的相关睡眠参数比较"

Group TRT/min TST/min SE/%
x ?±s r x ?±s r x ?±s r
PSG 486.88±35.54 394.48±64.00 81.22±12.94
Actiwatch (low) 517.42±48.47* 0.47 399.59±66.67* 0.53 77.40±12.17* 0.46
Actiwatch (medium) 517.42±48.47* 0.47 420.75±62.55* 0.51 81.48±11.12* 0.45
Actiwatch (high) 517.42±48.47* 0.47 440.94±62.63* 0.47 85.37±10.90* 0.42

表2

年龄分组后PSG与低灵敏度条件下Actiwatch的相关睡眠参数比较"

Age group/years Monitoring TRT/min TST/min SE/%
x ?±s r x ?±s r x ?±s r
≤18 PSG 519.28±45.61 442.30±61.74 85.81±14.36
Actiwatch 551.80±61.53 0.20 356.40±76.96* 0.92 65.54±7.10 0.77
19-40 PSG 448.12±39.68 396.54±68.21 81.37±13.50
Actiwatch 517.27±45.56* 0.55 400.71±67.57* 0.67 77.53±12.07* 0.60
41-65 PSG 481.35±29.93 390.96±61.04 81.48±12.91
Actiwatch 514.69±50.21 0.46 400.73±64.02* 0.47 78.02±11.54* 0.38
≥66 PSG 500.71±36.00 381.94±61.72 76.09±9.62
Actiwatch 517.89±43.65 0.17 410.11±77.74 0.45 78.99±12.76 0.48

表3

按诊断分组后PSG与低灵敏度条件下Actiwatch的相关睡眠参数比较"

Group Monitoring TRT/min TST/min SE/%
x ?±s r x ?±s r x ?±s r
Narcolepsy PSG 488.28±39.36 416.23±55.72 85.58±10.41
Actiwatch 518.80±69.54* 0.71 373.20±77.05 0.45 72.06±12.93 0.38
Normal PSG PSG 482.40±24.38 388.29±70.50 80.40±14.00
Actiwatch 497.30±41.61* 0.51 394.90±72.94* 0.79 79.46±13.92* 0.72
OSAS PSG 488.37±36.41 392.63±62.76 80.68±12.95
Actiwatch 525.09±44.32* 0.37 406.64±61.22* 0.47 77.63±11.10* 0.40
[1] Rundo JV, Downey R, 3rd. Polysomnography [J]. Handb Clin Neurol, 2019, 160:381-392.
[2] Morgenthaler T, Alessi C, Friedman L, et al. Practice parameters for the use of actigraphy in the assessment of sleep and sleep disorders: An update for 2007 [J]. Sleep, 2007, 30(4):519-529.
pmid: 17520797
[3] Smith MT, McCrae CS, Cheung J, et al. Use of actigraphy for the evaluation of sleep disorders and circadian rhythm sleep-wake disorders: An American Academy of Sleep Medicine clinical practice guideline [J]. J Clin Sleep Med, 2018, 14(7):1231-1237.
doi: 10.5664/jcsm.7230
[4] Park KS, Choi SH. Smart technologies toward sleep monitoring at home [J]. Biomed Eng Lett, 2019, 9(1):73-85.
doi: 10.1007/s13534-018-0091-2
[5] Haghayegh S, Khoshnevis S, Smolensky MH, et al. Performance comparison of different interpretative algorithms utilized to derive sleep parameters from wrist actigraphy data [J]. Chronobiol Int, 2019, 36(12):1752-1760.
doi: 10.1080/07420528.2019.1679826 pmid: 31658822
[6] Conley S, Knies A, Batten J, et al. Agreement between actigra-phic and polysomnographic measures of sleep in adults with and without chronic conditions: A systematic review and meta-analysis [J]. Sleep Med Rev, 2019, 46(1):151-160.
doi: 10.1016/j.smrv.2019.05.001
[7] Tonetti L, Pasquini F, Fabbri M, et al. Comparison of two diffe-rent actigraphs with polysomnography in healthy young subjects [J]. Chronobiol Int, 2008, 25(1):145-153.
doi: 10.1080/07420520801897228
[8] Lee PH, Suen LK. The convergent validity of Actiwatch 2 and ActiGraph Link accelerometers in measuring total sleeping period, wake after sleep onset, and sleep efficiency in free-living condition [J]. Sleep Breath, 2017, 21(1):209-215.
doi: 10.1007/s11325-016-1406-0
[9] van de Wouw E, Evenhuis HM, Echteld MA. Comparison of two types of Actiwatch with polysomnography in older adults with intellectual disability: a pilot study [J]. J Intellect Dev Disabil, 2013, 38(3):265-273.
doi: 10.3109/13668250.2013.816274
[10] Meltzer LJ, Walsh CM, Traylor J, et al. Direct comparison of two new actigraphs and polysomnography in children and adolescents [J]. Sleep, 2012, 35(1):159-166.
doi: 10.5665/sleep.1608 pmid: 22215930
[11] Martin JL, Hakim AD. Wrist actigraphy [J]. Chest, 2011, 139(6):1514-1527.
doi: 10.1378/chest.10-1872
[12] Baron KG, Duffecy J, Berendsen MA, et al. Feeling validated yet? A scoping review of the use of consumer-targeted wearable and mobiletechnology to measure and improve sleep [J]. Sleep Med Rev, 2018, 40(1):151-159.
doi: 10.1016/j.smrv.2017.12.002
[13] 李清华, 王碧瑛, 董霄松, 等. 腕动仪结合血氧监测仪在诊断睡眠呼吸暂停低通气综合征中的价值 [J]. 中华医学杂志, 2015, 95(42):3411-3415.
[1] 马雨佳,卢燃藜,周泽宸,李晓怡,闫泽玉,武轶群,陈大方. 基于两样本孟德尔随机化的失眠与2型糖尿病关联研究[J]. 北京大学学报(医学版), 2024, 56(1): 174-178.
[2] 邓佳慧,黄筱琳,刘晓星,孙杰,陆林. 中国睡眠医学的过去、现在和未来[J]. 北京大学学报(医学版), 2023, 55(3): 567-封三.
[3] 杨若彤,王梦莹,李春男,于欢,王小文,吴俊慧,王斯悦,王伽婷,陈大方,吴涛,胡永华. 缺血性脑卒中全基因组关联研究提示阳性基因位点与睡眠行为的交互作用[J]. 北京大学学报(医学版), 2022, 54(3): 412-420.
[4] 张绍兴,姚子明,栾胜,王丽,徐颖. 使用多参数压敏式便携睡眠监测系统检测阻塞型睡眠呼吸暂停伴低通气综合征[J]. 北京大学学报(医学版), 2021, 53(3): 608-612.
[5] 王一帆,范稹,成姚斌,金月波,霍阳,何菁. 原发性干燥综合征患者睡眠障碍的相关影响因素[J]. 北京大学学报(医学版), 2020, 52(6): 1063-1068.
[6] 董冰婉,张俊波,肖水芳. Friedman分型联合术后早期睡眠脉氧监测对悬雍垂腭咽成形术疗效的预测价值[J]. 北京大学学报(医学版), 2020, 52(2): 281-284.
[7] 谢江,李菲. 睡眠重叠综合征与糖尿病发病率的横断面调查研究[J]. 北京大学学报(医学版), 2019, 51(2): 252-255.
[8] 陈天麒,董彬,张文静,高迪思,董彦会,马军,马迎华. 儿童青少年睡眠时间与速度和耐力成绩的相关性研究[J]. 北京大学学报(医学版), 2018, 50(3): 429-435.
[9] 马运东, 黄东, 陈宇峰, 姜皓云, 刘军华, 孙洪强, 李志宏. 应用于无线多导睡眠监测的皮肤贴电极制备及验证[J]. 北京大学学报(医学版), 2018, 50(2): 358-363.
[10] 龚潘,杨志仙,薛姣,钱萍,杨海坡,刘晓燕,边凯归. 头皮脑电图中高频振荡在癫痫性脑病伴睡眠中持续棘慢波患儿中的应用[J]. 北京大学学报(医学版), 2018, 50(2): 213-220.
[11] 马燕燕,章晶晶,高雪梅. 不同下颌前伸度口腔矫治器治疗阻塞性睡眠呼吸暂停低通气综合征的系统评价[J]. 北京大学学报(医学版), 2017, 49(4): 691-699.
[12] 弓煦,赵颖,李巍然,高雪梅. 不同疗程戴用口腔矫治器治疗阻塞性睡眠呼吸暂停低通气综合征的疗效对比[J]. 北京大学学报(医学版), 2017, 49(1): 115-119.
[13] 雷杰,刘木清,傅开元. 睡眠问题、焦虑及压力是颞下颌关节紊乱病肌筋膜疼痛发病的风险指标[J]. 北京大学学报(医学版), 2016, 48(4): 692-696.
[14] 郑棒1,李曼1,王凯路2,吕筠1△. 匹兹堡睡眠质量指数在某高校医学生中的信度与效度评价[J]. 北京大学学报(医学版), 2016, 48(3): 424-428.
[15] 邹东, 董霄松, 韩芳, 潘韶霞, 冯海兰. 戴用义齿对无牙颌患者睡眠呼吸的影响[J]. 北京大学学报(医学版), 2014, 46(2): 299-301.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!