北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (5): 946-951. doi: 10.19723/j.issn.1671-167X.2021.05.023

• 论著 • 上一篇    下一篇

全身麻醉下小儿开颅术术中心脏前负荷动态指标的一致性分析

刘雅菲1,宋琳琳1,(),邢茂炜1,蔡立新2,王东信1   

  1. 北京大学第一医院1. 麻醉科, 北京 100034
    2.儿童癫痫中心, 北京 100034
  • 收稿日期:2020-11-16 出版日期:2021-10-18 发布日期:2021-10-11
  • 通讯作者: 宋琳琳 E-mail:songlinlinlynkia@163.com

Comparison of pulse pressure variation, stroke volume variation, and plethysmographic variability index in pediatric patients undergoing craniotomy

LIU Ya-fei1,SONG Lin-lin1,(),XING Mao-wei1,CAI Li-xin2,WANG Dong-xin1   

  1. 1. Department of Anesthesiology, Beijing 100034, China
    2. Pediatric Epilepsy Center, Peking University First Hospital, Beijing 100034, China
  • Received:2020-11-16 Online:2021-10-18 Published:2021-10-11
  • Contact: Lin-lin SONG E-mail:songlinlinlynkia@163.com

RICH HTML

  

摘要:

目的: 在小儿开颅癫痫病灶切除术中连续监测每搏量变异(stroke volume variation, SVV)、脉压变异(pulse pressure variation, PPV)和脉搏容积变异(plethysmographic variability index, PVI)3项心脏前负荷动态指标,评价这些常用动态指标的一致性,探索三者之间是否可以互换,以简化临床决策过程。方法: 30例行择期开颅癫痫病灶切除术的0 ~ 14岁患儿术中常规监测SVV、PPV和PVI, 根据上述指标和动脉收缩压实施目标导向液体管理。所有数据对分为6个阶段,每个阶段选取3 ~ 8个数据对,用Bland-Altman法分析数据对数值的一致性,用四象限图和极图分析数据对的同向变化趋势。结果: 患儿术中动脉收缩压为 (94±19) mmHg,平均SVV、PPV和PVI分别为8%±2%、10%±3%和15%±7%,共分析834个数据对。Bland-Altman分析显示SVV-PPV的平均偏倚为-2.3,一致限为-6.0 ~ 1.5,误差百分比为26%。SVV-PVI和PPV-PVI的平均偏倚分别为-7.5和-5.0,一致限分别为-22.7 ~ 7.8和-20.5 ~ 10.5,误差百分比分别为54%和43%。四象限图分析中3项指标变化的符合率分别为ΔSVV-ΔPPV 88.6%、ΔSVV-ΔPVI 50.1%、ΔPPV-ΔPVI 50.4%。<3岁者PPV-SVV符合率高于≥ 3岁者(92.7%与84.2%)。极坐标图分析中SVV-PPV变化的角符合率为86.6%,基于动脉压力波形的指标(SVV和PPV)与PVI变化符合率较差(分别为29.1%和29.9%)。结论: 小儿开颅术中SVV和PPV变化趋势一致性较高,尤其<3岁者,二者可以互换,无需额外使用SVV监测设备;但基于动脉压力波形的指标(SVV和PPV)与PVI之间变化趋势的一致性较差,不能互换。联合PPV和PVI用于监测心脏前负荷可能有助于提高小儿术中补液反应性的预测值。

关键词: 每搏量变异, 脉压变异, 脉搏容积变异, 开颅术, 儿童

Abstract:

Objective: To compare well-known preload dynamic parameters intraoperatively including stroke volume variation (SVV), pulse pressure variation (PPV), and plethysmographic variability index (PVI) in children who underwent craniotomy for epileptogenic lesion excision. Methods: A total of 30 children aged 0 to 14 years undergoing craniotomy for intracranial epileptogenic lesion excision were enrolled. During surgery, we measured PPV, SVV (measured by the Flotrac/Vigileo device), and PVI (measured by the Masimo Radical-7 monitor) simultaneously and continuously. Preload dynamic parameter measurements were collected at predefined steps: after induction of anesthesia, during opening the skull, intraoperative electroencephalogram monitoring, excision of epileptogenic lesion, skull closure, at the end of the operation. After exclusion of outliers, agreement among SVV, PPV, and PVI was assessed using repeated measures of Bland-Altman approach. The 4-quadrant and polar plot techniques were used to assess the trending ability among the changes in the three parameters. Results: The mean SVV, PPV, and PVI were 8%±2%, 10%±3%, and 15%±7%, respectively during surgery. We analyzed a total of 834 paired measurements (3 to 8 data sets for each phase per patient). Repeated measures Bland-Altman analysis identified a bias of -2.3 and 95% confidence intervals between -1.9 and -2.7 (95% limits of agreement between -6.0 and 1.5) between PPV and SVV, showing significant correlation at all periods. The bias between PPV and PVI was -5.0 with 95% limits of agreement between -20.5 and 10.5, and that between SVV and PVI was -7.5 with 95% limits of agreement between -22.7 and 7.8, both not showing significant correlation. Reflected by 4-quadrant plots, the con-cordance rates showing the trending ability between the changes in PPV and SVV, PPV and PVI, SVV and PVI were 88.6%, 50.4%, and 50.1%, respectively. The concordance rate between PPV and SVV was higher (92.7%) in children aged less than 3 years compared with those aged 3 and more than 3 years. The mean angular bias, radial limits of agreement, and angular concordance rate in the polar analysis were not clinically acceptable in the changes between arterial pressure waveform-based parameters and volume-based PVI (PPV vs. PVI: angular mean bias 8.4°, angular concordance rate 29.9%; SVV vs. PVI: angular mean bias 2.4°, angular concordance rate 29.1%). There was a high concordance between the two arterial pressure waveform-based parameters reflected by the polar plot (angular mean bias -0.22°, angular concordance rate 86.6%). Conclusion: PPV can be viewed as a surrogate for SVV, especially in children aged less than 3 years. The agreement between arterial pressure waveform-based preload parameters (PPV and SVV) and PVI is poor and these two should not be considered interchangeable. Attempt to combine PVI and PPV for improving the anesthesiologist’s ability to monitor cardiac preload in major pediatric surgery is warranted.

Key words: Stroke volume variation, Pulse pressure variation, Plethysmographic variability index, Craniotomy, Child

中图分类号: 

  • R726.1

表1

患儿一般情况和术中血流动力学"

Items All children (n=30) <3 years (n=15) ≥3 years (n=15)
Age/years 4.4±2.9 2.0±0.5 6.8±2.0
Male/Female 20/10 10/6 10/4
Height/cm 109.0±21.6 91.3±5.4 126.6±16.3
Weight/kg 21.5±11.5 12.3±2.5 29.8±11.1
BMI/(kg/m2) 17.0±2.7 15.8±2.3 18.1±2.7
Time of anesthesia/min 285±48 270±55 299±37
Total volume/mL 1 008±557 620±177 1 395±538
Urine volume/mL 470±309 275±189 665±286
Blood volume/mL 138±48 105±55 170±42
SBP/mmHg 94±19 90±15 97±21
HR/(beats/min) 81±14 91±9 71±9
OI before incision/mmHg 626±64 634±67 617±61
OI after surgery/mmHg 638±51 639±37 636±60
Lactate before incision/mmHg 0.9±0.3 0.7±0.3 1.0±0.3
Lactate after surgery/mmHg 1.0±0.4 0.8±0.2 1.2±0.5
SVV/% 8±2 7±2 9±3
PVV/% 10±3 9±3 11±3
PVI/% 15±7 14±6 16±7

图1

Bland-Altman图显示所有患儿SVV-PPV、SVV-PVI、PPV-PVI数值一致性"

图2

所有患儿ΔSVV、ΔPPV和ΔPVI四象限图"

表2

年龄相关的四象限图ΔSVV、ΔPPV和ΔPVI符合率"

Items All children <3 years ≥3 years
ΔSVV-ΔPPV 88.6% 92.7% 84.2%
ΔSVV-ΔPVI 50.1% 52.6% 49.4%
ΔPPV-ΔPVI 50.4% 40.4% 61.1%

图3

所有患儿ΔSVV、ΔPPV和ΔPVI极图"

[1] Chen PH, Chan KC, Liao MH, et al. Accuracy of dynamic preload variables for predicting fluid responsiveness in patients with pediatric liver cirrhosis: a prospective study [J]. Paediatr Anaesth, 2020, 30(4):455-461.
doi: 10.1111/pan.v30.4
[2] Cheng YW, Xu F, Li J. Identification of volume parameters monitored with a noninvasive ultrasonic cardiac output monitor for predicting fluid responsiveness in children after congenital heart disease surgery [J]. Medicine (Baltimore), 2018, 97(39):e12289.
doi: 10.1097/MD.0000000000012289
[3] Liu T, Xu C, Wang M, et al. Reliability of pleth variability index in predicting preload responsiveness of mechanically ventilated patients under various conditions: a systematic review and meta-analysis [J]. BMC Anesthesiol, 2019, 19(1):67.
doi: 10.1186/s12871-019-0744-4
[4] Kim DH, Shin S, Kim JY, et al. Pulse pressure variation and pleth variability index as predictors of fluid responsiveness in patients undergoing spinal surgery in the prone position [J]. Ther Clin Risk Manag, 2018, 14:1175-1183.
doi: 10.2147/TCRM
[5] Saugel B, Heeschen J, Hapfelmeier A, et al. Cardiac output estimation using multi-beat analysis of the radial arterial blood pressure waveform: a method comparison study in patients having off-pump coronary artery bypass surgery using intermittent pulmonary artery thermodilution as the reference method [J]. J Clin Monit Comput, 2020, 34(4):649-654.
doi: 10.1007/s10877-019-00375-z pmid: 31456072
[6] Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update [J]. Ann Intensive Care, 2016, 2016(6):111.
[7] Joosten A, Jacobs A, Desebbe O, et al. Monitoring of pulse pressure variation using a new smartphone application (Capstesia) versus stroke volume variation using an uncalibrated pulse wave analysis monitor: a clinical decision making study during major abdominal surgery [J]. J Clin Monit Comput, 2019, 33(5):787-793.
doi: 10.1007/s10877-018-00241-4
[8] Ji SH, Song IK, Jang YE, et al. Comparison of pulse pressure variation and pleth variability index in the prone position in pediatric patients under 2 years old [J]. Korean J Anesthesiol, 2019, 72(5):466-471.
doi: 10.4097/kja.19128
[9] Desgranges FP, Evain JN, Pereira de Souza NE, et al. Does the plethysmographic variability index predict fluid responsiveness in mechanically ventilated children? A meta-analysis [J]. Br J Anaesth, 2016, 117(3):409-410.
doi: 10.1093/bja/aew245 pmid: 27543550
[10] Lee JH, Kim EH, Jang YE, et al. Fluid responsiveness in the pediatric population [J]. Korean J Anesthesiol, 2019, 72(5):429-440.
doi: 10.4097/kja.19305
[1] 赵双云, 邹思雨, 李雪莹, 沈丽娟, 周虹. 中文版口腔健康素养量表简版(HeLD-14)在学龄前儿童家长中应用的信度和效度评价[J]. 北京大学学报(医学版), 2024, 56(5): 828-832.
[2] 陈心心, 唐哲, 乔艳春, 荣文笙. 北京市密云区4岁儿童患龋状况及其与龋活跃性检测的相关性[J]. 北京大学学报(医学版), 2024, 56(5): 833-838.
[3] 岳芷涵,韩娜,鲍筝,吕瑾莨,周天一,计岳龙,王辉,刘珏,王海俊. 儿童早期体重指数轨迹与超重风险关联的前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 390-396.
[4] 费秀文,刘斯,汪波,董爱梅. 成人及儿童组织坏死性淋巴结炎临床特征及治疗[J]. 北京大学学报(医学版), 2024, 56(3): 533-540.
[5] 俞光岩. 儿童唾液腺疾病[J]. 北京大学学报(医学版), 2024, 56(1): 1-3.
[6] 闫晓晋,刘云飞,马宁,党佳佳,张京舒,钟盼亮,胡佩瑾,宋逸,马军. 《中国儿童发展纲要(2011-2020年)》实施期间中小学生营养不良率变化及其政策效应分析[J]. 北京大学学报(医学版), 2023, 55(4): 593-599.
[7] 弭小艺,侯杉杉,付子苑,周末,李昕璇,孟召学,蒋华芳,周虹. 中文版童年不良经历问卷在学龄前儿童父母中应用的信效度评价[J]. 北京大学学报(医学版), 2023, 55(3): 408-414.
[8] 崔孟杰,马奇,陈曼曼,马涛,王鑫鑫,刘婕妤,张奕,陈力,蒋家诺,袁雯,郭桐君,董彦会,马军,星一. 不同生长模式与7~17岁儿童青少年代谢综合征的关系[J]. 北京大学学报(医学版), 2023, 55(3): 415-420.
[9] 党佳佳,蔡珊,钟盼亮,王雅琪,刘云飞,师嫡,陈子玥,张依航,胡佩瑾,李晶,马军,宋逸. 室外夜间人工光暴露与中国9~18岁儿童青少年超重肥胖的关联[J]. 北京大学学报(医学版), 2023, 55(3): 421-428.
[10] 陈敬,肖伍才,单蕊,宋洁云,刘峥. DRD2基因rs2587552多态性对儿童肥胖干预效果的影响:一项前瞻性、平行对照试验[J]. 北京大学学报(医学版), 2023, 55(3): 436-441.
[11] 李辉,高阳旭,王书磊,姚红新. 恶性肿瘤患儿完全植入式静脉输液港手术并发症[J]. 北京大学学报(医学版), 2022, 54(6): 1167-1171.
[12] 刘京,陆爱东,左英熹,吴珺,黄志卓,贾月萍,丁明明,张乐萍,秦炯. 儿童急性淋巴细胞白血病合并癫痫发作75例临床特征和预后分析[J]. 北京大学学报(医学版), 2022, 54(5): 948-953.
[13] 崔雅茜,杜军保,张清友,廖莹,刘平,王瑜丽,齐建光,闫辉,徐文瑞,刘雪芹,孙燕,孙楚凡,张春雨,陈永红,金红芳. 儿童直立不耐受和坐位不耐受的疾病谱及治疗方式十年回顾[J]. 北京大学学报(医学版), 2022, 54(5): 954-960.
[14] 马涛,李艳辉,陈曼曼,马莹,高迪,陈力,马奇,张奕,刘婕妤,王鑫鑫,董彦会,马军. 青春期启动提前与儿童肥胖类型的关联研究: 基于横断面调查和队列调查[J]. 北京大学学报(医学版), 2022, 54(5): 961-970.
[15] 杜燕燕,王健,贺兰,季丽娜,徐樨巍. 儿童川崎病合并轻微脑炎/脑病伴可逆性胼胝体压部病变综合征1例并文献复习[J]. 北京大学学报(医学版), 2022, 54(4): 756-761.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!