北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (5): 907-919. doi: 10.19723/j.issn.1671-167X.2022.05.018

• 论著 • 上一篇    下一篇

荆防颗粒中抑制新型冠状病毒蛋白酶3CLpro及PLpro的活性成分

尚展鹏,易阳,余蓉,范婧婧,黄昱曦,乔雪,叶敏*()   

  1. 北京大学药学院天然药物及仿生药物国家重点实验室,北京大学云南白药国际医学研究中心,北京 100191
  • 收稿日期:2022-05-15 出版日期:2022-10-18 发布日期:2022-10-14
  • 通讯作者: 叶敏 E-mail:yemin@bjmu.edu.cn
  • 作者简介:叶敏,北京大学药学院教授,生药学专业博士生导师。1993—2000年在北京中医药大学学习,获得学士及硕士学位。2003年毕业于北京大学,获生药学专业博士学位。2003—2007年在北京大学药学院、耶鲁大学等地从事博士后研究。2007年12月受聘于北京大学药学院,2012年晋升为教授。曾获得国家杰出青年科学基金项目资助和茅以升北京青年科技奖。
    主要研究领域为中药药效物质及质量分析和天然药物生物合成与生物催化。发展了针对中药复杂体系的新分析方法,阐明了甘草等常用中药的药效成分,发现了多个有药用价值的活性分子。从药用植物中发现了一系列碳糖基转移酶等生物合成关键酶,通过晶体结构分析阐明其催化机制,并建立绿色高效的生物催化方法,应用于中药药效成分的酶合成与结构优化。发表SCI论文230余篇,累计被引用7 000余次。目前担任国务院学位委员会第八届药学学科评议组成员、国家药典委员、中国植物学会药用植物及植物药专业委员会副主任委员、世界中医药学会联合会中药分析专业委员会副会长、J EthnopharmacolPharm Biol期刊副主编
  • 基金资助:
    国家自然科学基金(81725023);国家自然科学基金(82122073);国家自然科学基金(82003614)

Bioactive compounds of Jingfang Granules against SARS-CoV-2 virus proteases 3CLpro and PLpro

Zhan-peng SHANG,Yang YI,Rong YU,Jing-jing FAN,Yu-xi HUANG,Xue QIAO,Min YE*()   

  1. State Key Laboratory of Natural and Biomimetic Drugs, Peking University-Yunnan Baiyao International Medical Research Center, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
  • Received:2022-05-15 Online:2022-10-18 Published:2022-10-14
  • Contact: Min YE E-mail:yemin@bjmu.edu.cn
  • Supported by:
    the National Natural Science Foundation of China(81725023);the National Natural Science Foundation of China(82122073);the National Natural Science Foundation of China(82003614)

摘要:

目的: 荆防颗粒是新型冠状病毒肺炎预防及轻症治疗的推荐用药,本文结合化学成分分析及活性检测,阐明其潜在的活性成分。方法: 采用酶学方法测定荆防颗粒提取物对新型冠状病毒3-chymotrypsin-like protease (3CLpro)、papain like protease (PLpro)、spike protein receptor-binding domain (S-RBD)及人cyclooxygenase-2 (COX-2)的抑制活性,利用氨水引咳小鼠模型测试其止咳作用;基于liquid chromatography-mass spectrometry(LC/MS)技术对荆防颗粒进行化学成分定性、定量分析,阐明其化学组成;采用酶学实验、分子对接、定点突变等方法测定荆防颗粒中抑制3CLpro、PLpro的主要活性成分并阐明可能的作用机制。结果: 荆防颗粒提取物对新型冠状病毒3CLpro、PLpro蛋白酶具有一定的抑制作用,且具有COX-2抑制活性及止咳药效。进一步在荆防颗粒鉴定了56个成分,其中16个成分经与对照品比对,准确鉴定其化学结构,并测定了其含量,总量为2 498.8 μg/g。16个成分中的主要成分升麻素苷对3CLpro和PLpro均具有显著的抑制活性,8 μmol/L的抑制率分别为76.8%和78.2%;新橙皮苷、柚皮苷对PLpro有抑制活性,8 μmol/L的抑制率分别为53.5%和46.1%。分子对接结果表明,升麻素苷可与3CLpro、PLpro活性口袋的氨基酸残基形成氢键,结合能分别为-7.7和-7.3 kcal/mol。定点突变结果表明,氨基酸残基K157是升麻素苷与PLpro相互作用的重要活性位点。结论: 荆防颗粒的主要成分升麻素苷、新橙皮苷、柚皮苷等具有抑制新型冠状病毒3CLpro及PLpro的活性,为荆防颗粒的临床合理使用提供了依据。

关键词: 荆防颗粒, 活性成分, 新型冠状病毒, 3CLpro, PLpro

Abstract:

Objective: Jingfang Granules have been recommended for the prevention and treatment of corona virus disease 2019 (COVID-19). Through chemical analysis and bioactivity evaluation, this study aims to elucidate the potential effective components of Jingfang Granules. Methods: The inhibitory acti-vities of Jingfang Granules extract against 3-chymotrypsin-like protease (3CLpro), papain like protease (PLpro), spike protein receptor-binding domain (S-RBD) and human cyclooxygenase-2 (COX-2) were evaluated using enzyme assay. The antitussive effects were evaluated using the classical ammonia-induced cough model. The chemical constituents of Jingfang Granules were qualitatively and quantitatively analyzed by liquid chromatography-mass spectrometry (LC/MS). The 3CLpro and PLpro inhibitory activities of the major compounds were determined by enzyme assay, molecular docking, and site-directed mutagenesis. Results: Jingfang Granules exhibited 3CLpro and PLpro inhibitory activities, as well as COX-2 inhibitory and antitussive activities. By investigating the MS/MS behaviors of reference standards, a total of fifty-six compounds were characterized in Jingfang Granules. Sixteen of them were unambiguously identified by comparing with reference standards. The contents of the 16 major compounds were also determined, and their total contents were 2 498.8 μg/g. Naringin, nodakenin and neohesperidin were three dominating compounds in Jingfang Granules, and their contents were 688.8, 596.4 and 578.7 μg/g, respectively. In addition, neohesperidin and naringin exhibited PLpro inhibitory activities, and the inhibition rates at 8 μmol/L were 53.5% and 46.1%, respectively. Prim-O-glucosylcimifugin showed significant inhibitory activities against 3CLpro and PLpro, and the inhibitory rates at 8 μmol/L were 76.8% and 78.2%, respectively. Molecular docking indicated that hydrogen bonds could be formed between prim-O-glucosylcimifugin and amino acid residues H163, E166, Q192, T190 of 3CLpro (binding energy, -7.7 kcal/mol) and K157, D164, R166, E167, T301 of PLpro(-7.3 kcal/mol), respectively. Site-directed mutagenesis indicated amino acid residue K157 was a key active site for the interaction between prim-O-glucosylcimifugin and PLpro. Conclusion: Prim-O-glucosylcimifugin, neohesperidin, and naringin as the major compounds from Jingfang Granules could inhibit severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus proteases 3CLpro and PLpro. The results are valuable for rational clinical use of Jingfang Granules.

Key words: Jingfang Granules, Effective components, Severe acute respiratory syndrome coronavirus 2, 3-chymotrypsin-like protease, Papain like protease

中图分类号: 

  • R932

图1

化学对照品的结构式"

图2

荆防颗粒提取物的3CLpro、PLpro、S-RBD、COX-2抑制活性及止咳活性"

表1

LC/MS方法鉴定荆防颗粒的化学成分"

No. tR/min Precursor ion Formula Ion mode MS/MS Identification Type Source Reference
P1 1.51 353.087 4 C16H18O9 - 191.055 8, 179.034 7 Cryptochlorogenic acid Phenolic acid JingJie [22]
P2 1.78 353.087 4 C16H18O9 - 191.055 7 Neochlorogenic acid Phenolic acid JingJie [22]
P3 2.02 563.140 2 C26H28O14 - 383.076 7, 353.066 3 Schaftoside Flavonoid GanCao [23]
P4 2.10 515.118 7 C25H24O12 - 191.055 8, 179.034 7 Isochlorogenic acid A Phenolic acid JingJie [22]
P5 2.47 179.034 7 C9H8O4 - 135.044 9 Caffeic acid Phenolic acid JingJie [22]
P6 2.49 469.169 8 C22H28O11 + 307.117 0, 261.111 8 Prim-O-glucosylcimifugin isomer Chromone ShengMa [24]
P7(1) 2.58 469.169 6 C22H28O11 + 307.117 0, 261.111 9 Prim-O-glucosylcimifugin Chromone ShengMa [24]
P8 2.74 577.155 8 C27H30O14 - 383.076 9, 353.066 2 Violanthin Flavonoid GanCao [23]
P9(2) 3.43 549.160 8 C26H30O13 - 255.065 9, 135.008 5 Liquiritin apioside Flavonoid GanCao [23]
P10 3.55 595.166 1 C27H32O15 - 459.113 9, 287.055 6, 151.003 4 Neoeriocitrin Flavonoid GanCao [25]
P11(3) 3.81 417.118 6 C21H22O9 - 255.065 9, 135.008 5, 119.049 9 Liquiritin Flavonoid GanCao [23]
P12 3.93 447.092 5 C21H20O11 - 285.040 0 Luteolin-7-glucoside Flavonoid JingJie [25]
P13 4.44 515.118 9 C25H24O12 - 191.055 8, 179.034 7, 173.045 2 Isochlorogenic acid B Phenolic acid JingJie [22]
P14(4) 4.74 579.169 8 C27H32O14 - 271.060 9, 151.003 4 Narirutin Flavonoid ZhiKe [25]
P15(5) 4.78 307.115 6 C16H18O6 + 289.106 5, 289.106 5, 235.059 7 Cimifugin Chromone ShengMa [24]
P16 4.78 409.147 1 C20H24O9 + 187.038 7, 159.043 7 Nodakenin Coumarin FangFeng [26]
P17 4.78 229.084 6 C14H12O3 + 187.038 7, 159.043 7 Angenomalin Coumarin QiangHuo [27]
P18(6) 4.79 407.133 2 C20H23O9 - 227.070 9 Nodakenin Coumarin QianHu [26]
P19 4.82 577.155 5 C27H30O14 - 269.045 2 Rhoifolin/isomer Flavonoid ZhiKe [25]
P20(7) 5.17 579.169 6 C27H32O14 - 459.114 9, 271.060 8, 151.003 4 Naringin Flavonoid ZhiKe [25]
P21(8) 5.29 451.159 5 C22H28O10 - 271.097 2 5-O-methylvisammioside Chromone FangFeng [24]
P22 5.30 453.173 3 C22H28O10 + 291.122 0, 273.111 5, 231.064 7 4′-O-β-D-glucosyl-5-O-methylvisamminol Chromone FangFeng [24]
P23 5.46 515.118 7 C25H24O12 - 191.055 8, 179.034 7, 173.045 1 Isochlorogenic acid C Phenolic acid JingJie [22]
P24(9) 5.55 609.180 3 C28H34O15 - 301.071 2, 151.003 3 Hesperidin Flavonoid ZhiKe [25]
P25(10) 5.72 359.076 9 C18H16O8 - 179.034 7, 161.024 1 Rosmarinic acid Phenolic acid JingJie [22]
P26(11) 5.87 609.180 1 C28H34O15 - 301.071 3, 151.003 2 Neohesperidin Flavonoid ZhiKe [25]
P27 6.11 549.160 9 C26H30O13 - 255.065 9, 135.008 5 Isoliquiritin apioside Flavonoid GanCao [23]
P28 6.20 463.124 1 C22H24O11 - 301.071 2 Hyperin Flavonoid JingJie [25]
P29 6.54 417.118 7 C21H22O9 - 255.065 9, 135.008 6, 119.049 9 Isoliquiritin Flavonoid GanCao [23]
P30 7.47 255.065 9 C15H12O4 - 135.008 5, 119.049 9 Liquiritigenin Flavonoid GanCao [23]
P31 7.65 1237.548 4 C57H90O29 - 695.364 2, 519.332 2 Platycodin J Saponin JieGeng [28]
P32 7.71 1091.526 6 C52H84O24 - 681.384 7, 457.331 8 Deapioplatycodin D Saponin JieGeng [28]
P33 7.76 291.121 0 C16H18O5 + 273.111 4, 243.064 5, 219.064 8 5-O-methylvisamminol Coumarin FangFeng [24]
P34 7.77 285.040 0 C15H10O6 - 151.003 3, 133.029 0 Luteolin Flavonoid JingJie [25]
P35 7.80 1369.624 8 C63H102O32 - 827.443 2, 503.337 3, 469.155 4 Polygalacin D2 Saponin JieGeng [28]
P36(12) 7.83 1223.568 2 C57H92O28 - 681.384 7, 469.155 4 Platycodin D Saponin JieGeng [28]
P37 7.89 1105.506 3 C52H82O25 - 895.426 8, 485.290 1 Platyconic acid C Saponin JieGeng [28]
P38 8.39 1265.579 4 C59H94O29 - 681.384 7, 469.155 7 Platycodin A Saponin JieGeng [28]
P39 8.45 895.396 4 C44H64O19 - 351.056 4, 193.035 1 Uralsaponin F Saponin GanCao [23]
P40 8.66 983.449 7 C48H72O21 - 821.396 2, 351.056 6 Licorice-saponin A3 Saponin GanCao [23]
P41 9.03 271.060 9 C15H12O5 - 151.003 4, 119.050 0 Naringenin Flavonoid ZhiKe [25]
P42 9.18 879.402 5 C44H64O18 - 351.056 2, 193.034 9 22β-acetoxyl-glycyrrhizin Saponin GanCao [23]
P43 9.36 837.390 9 C42H62O17 - 351.056 4, 193.035 0 Licorice-saponin G2 Saponin GanCao [23]
P44 9.63 301.071 5 C16H14O6 - 286.048 0, 164.011 3, 151.003 4 Hesperetin Flavonoid JingJie [25]
P45 9.92 377.160 0 C20H24O7 + 277.106 6, 205.049 3 Angelol A Coumarin DuHuo [27]
P46 10.24 837.390 4 C42H62O17 - 351.056 6, 193.035 0 Uralsaponin N Saponin GanCao [23]
P47 10.29 255.065 9 C15H12O4 - 135.008 6, 119.050 0 Isoliquiritigenin Flavonoid GanCao [23]
P48 10.36 377.157 6 C20H24O7 + 277.106 4, 205.049 1 Angelol B Coumarin DuHuo [27]
P49(13) 10.88 821.393 3 C42H62O16 - 351.056 4, 193.034 9 Glycyrrhizic acid Saponin GanCao [23]
P50(14) 11.89 779.457 2 C42H68O13 - 617.404 7, 423.328 9 Saikosaponin A Saponin ChaiHu [29]
P51 12.11 823.411 4 C42H64O16 - 351.056 4, 193.034 9 Licorice-saponin J2 Saponin GanCao [23]
P52 12.29 779.457 4 C42H68O13 - 617.404 9, 471.347 1 Saikosaponin B2 Saponin ChaiHu [29]
P53 12.38 779.457 5 C42H68O13 - 617.404 8, 455.315 9 Saikosaponin A /isomer Saponin ChaiHu [29]
P54 12.53 807.416 8 C42H64O15 - 351.056 3, 193.034 9 Licorice-saponin B2 Saponin GanCao [23]
P55(15) 14.10 245.116 3 C15H16O3 + 189.054 3, 131.049 0 Osthole Coumarin QiangHuo [27]
P56(16) 14.55 327.121 0 C19H18O5 + 227.069 7, 83.049 6 Praeruptorin A Coumarin QianHu [26]

图3

荆防颗粒的LC/UV及LC/MS谱图"

图4

荆防颗粒中代表性成分的MS/MS质谱图"

图5

荆防颗粒16个主要成分的LC/PRM-MS定量分析谱图"

表2

荆防颗粒中16个化合物的定量分析方法相关参数"

No. Compound Ion mode Collision energy/% Precursor ion Product ion Calibration equation r2 Range/(μg /L)
IS Puerarin - 35 415.103 7 295.061 0
1 Prim-O-glucosylcimifugin + 40 469.171 1 307.117 7 y=0.000 687+0.005 71x-2.370 37e-7x2 0.998 1 19.5-5 000.0
2 Liquiritin apioside - 35 549.161 9 255.066 6 y=0.021 41+0.002 33x-3.857 63e-9x2 0.993 8 78.1-5 000.0
3 Liquiritin - 20 417.119 6 255.066 6 y=0.039 28+0.004 03x-4.373 89e-8x2 0.995 1 78.1-5 000.0
4 Narirutin - 20 579.172 9 271.061 2 y=0.003 57+0.002 08x 0.997 0 19.5-5 000.0
5 Cimifugin + 60 307.117 9 235.060 2 y=0.010 25+0.010 77x -2.186 92e-6x2 0.998 9 19.5-1 250.0
6 Nodakenin - 20 453.141 1 227.071 6 y=0.001 55+0.000 38x-6.293 65e-9x2 0.999 4 39.0-10 000.0
7 Naringin - 35 579.172 9 271.061 2 y=0.014 32+0.001 39x-2.927 19e-8x2 0.997 7 39.0-10 000.0
8 5-O-methylvisammioside - 20 451.159 5 271.098 0 y=0.000 24+0.000 11x -5.315 51e-9x2 0.997 2 39.0-2 500.0
9 Hesperidin - 20 609.183 2 301.072 0 y=0.002 58+0.002 51x-1.413 47e-7x2 0.999 0 19.5-2 500.0
10 Rosmarinic acid - 20 359.077 4 161.024 5 y=0.001 05+0.001 80x +3.992 36e-9x2 0.999 1 19.5-5 000.0
11 Neohesperidin - 35 609.183 2 301.072 0 y=0.028 16+0.002 63x-9.288 72e-8x2 0.998 9 78.1-10 000.0
12 Platycodin D - 30 1 223.570 9 681.386 2 y=-0.000 21+0.001 140x 0.980 1 19.5-5 000.0
13 Glycyrrhizic acid - 50 821.397 7 351.057 5 y=0.245 84+0.001 14x-2.767 58e-8x2 0.999 1 19.5-2 500.0
14 Saikosaponin A - 35 779.458 4 617.406 3 y=-0.000 35+0.000 48x -8.079 04e-8x2 0.998 5 9.8-1 250.0
15 Osthole + 30 245.117 5 189.054 7 y=0.039 98+0.015 82x-9.182 13e-7x2 0.994 9 19.5-5 000.0
16 Praeruptorin A - 20 327.122 7 203.034 0 y=1.993 35+0.029 20x+4.227 01e-6x2 0.990 4 19.5-1 250.0

表3

16个化合物定量分析的方法学考察"

No. Repeatability /% Stability/% Precision Recovery
Intraday/% Interday/% Detection/ng Spiked/ng Recovery/% RSD/%
1 4.5 11.2 9.7 10.7 213.0 200.0 106.6 7.9
2 9.2 7.1 4.1 1.8 52.0 50.0 104.1 4.5
3 6.5 4.0 2.9 2.6 56.0 50.0 113.0 4.5
4 8.4 7.8 5.3 3.0 230.0 200.0 115.1 3.6
5 5.4 6.8 2.9 13.6 60.0 50.0 120.2 9.4
6 5.9 4.7 3.6 2.8 880.0 1 000.0 88.0 3.1
7 7.6 7.5 5.7 2.4 879.0 1 000.0 87.9 4.3
8 9.7 3.5 6.7 0.7 62.0 50.0 123.0 4.3
9 7.9 4.9 6.2 1.7 204.0 200.0 101.8 7.0
10 4.1 3.8 2.7 4.9 56.0 50.0 111.1 3.0
11 8.3 4.0 3.8 2.2 1 024.0 1 000.0 102.4 4.8
12 13.2 15.6 15.2 3.0 47.0 50.0 93.8 13.7
13 14.4 9.0 4.6 8.3 229.0 200.0 114.5 4.2
14 4.8 8.9 3.8 5.1 116.0 100.0 114.5 5.2
15 5.1 10.2 6.0 10.6 60.0 50.0 119.7 8.2
16 7.3 12.4 6.5 15.5 101.0 100.0 101.1 7.1

图6

荆防颗粒中16个主要成分的含量及其3CLpro和PLpro抑制活性"

图7

升麻素苷与3CLpro和升麻素苷、新橙皮苷、柚皮苷与PLpro的分子对接结果以及对PLproK157A突变体的抑制活性"

1 Huang C , Wang Y , Li X , et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China[J]. Lancet, 2020, 395 (10223): 497- 506.
doi: 10.1016/S0140-6736(20)30183-5
2 World Health Organization. WHO coronavirus (COVID-19) dashboard[EB/OL]. (2022-04-29)[2022-05-01]. https://covid19.who.int. 2021.
3 Merck. Merck and ridgeback's molnupiravir, an oral COVID-19 antiviral medicine, receives first authorization in the world[EB/OL]. (2021-11-04)[2022-04-15]. https://www.merck.com/news/merck-and-ridgebacks-molnupiravir-an-oral-covid-19-antiviral-medicine-receives-first-authorization-in-the-world. 2021.
4 Pfizer. Pfizer to provide U.S. government with 10 million treatment courses of investigational oral antiviral candidate to help combat COVID-19[EB/OL]. (2021-11-18)[2022-04-18]. https://www.pfizer.com/news/press-release/press-release-detail/pfizer-provide-us-government-10-million-treatment-courses.html. 2021.
5 Dai W , Zhang B , Jiang X , et al. Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease[J]. Science, 2020, 368 (6497): 1331- 1335.
doi: 10.1126/science.abb4489
6 Fu Z , Huang B , Tang J , et al. The complex structure of GRL0617 and SARS-CoV-2 PLpro reveals a hot spot for antiviral drug discovery[J]. Nat Commun, 2021, 12 (1): 488.
doi: 10.1038/s41467-020-20718-8
7 付新, 刘阳, 王雪梅, 等. 麻杏石甘汤的研究进展[J]. 中医药信息, 2017, 34 (2): 126- 128.
doi: 10.3969/j.issn.1002-2406.2017.02.037
8 赵琰, 胡杰, 张贵民, 等. 荆防败毒散的源流与应用[J]. 环球中医药, 2020, 13 (11): 1996- 2002.
doi: 10.3969/j.issn.1674-1749.2020.11.042
9 冯芹, 张贵民. 荆防败毒散治疗急性呼吸道感染的临床应用以及作用机制的探讨[J]. 中药与临床, 2020, 11 (3): 28- 32.
10 邹胜. 荆防败毒散治疗急性病毒性上呼吸道感染[J]. 山西中医, 2010, 26 (3): 11- 12.
11 殷健操, 周荣, 黄仁礼. 从"热入血室"论治新型冠状病毒肺炎产妇1例[J]. 光明中医, 2020, 35 (16): 2560- 2562.
doi: 10.3969/j.issn.1003-8914.2020.16.047
12 张奎, 陈红英, 马瑜. 荆防败毒散药效学研究[J]. 河南中医, 2009, 29 (6): 601- 602.
13 Song Y , Jing W , Yan R , et al. Research progress of the studies on the roots of Peucedanum praeruptorum dunn (Peucedani Radix)[J]. Pak J Pharm Sci, 2015, 28 (1): 71- 81.
14 Xi J , Xiang S , Zhang H , et al. Clinical observation of arbidol combined with diammonium glycyrrhizinate in the treatment of COVID-19[J]. Chin J Hosp Phar, 2020, 40 (12): 1287- 1290.
15 Shi R , Xu JW , Xiao ZT , et al. Naringin and naringenin relax rat tracheal smooth by regulating BKCa activation[J]. J Med Food, 2019, 22 (9): 963- 970.
doi: 10.1089/jmf.2018.4364
16 刘雯, 李峰, 孙春亮, 等. HPLC同时测定荆防颗粒中6种成分[J]. 中国实验方剂学杂志, 2016, 22 (17): 55- 58.
17 冯雪, 高玉乔, 范琼瑛, 等. 采用LC-ESI/MS方法同时测定荆防败毒口服液中4个有效成分含量[J]. 药物分析杂志, 2017, 37 (8): 1489- 1496.
18 梁红宝, 姜宇, 袁晓梅, 等. 基于GC-MS和UPLC-Q-Exactive MS技术的荆防颗粒化学成分研究[J]. 中草药, 2022, 53 (6): 1697- 1708.
19 Yi Y , Li J , Lai X , et al. Natural triterpenoids from licorice potently inhibit SARS-CoV-2 infection[J]. J Adv Res, 2022, 36, 201- 210.
doi: 10.1016/j.jare.2021.11.012
20 Shang Z , Xu L , Kuang Y , et al. Simultaneous determination of 35 constituents and elucidation of effective constituents in a multi-herb Chinese medicine formula Xiaoer-Feire-Kechuan[J]. J Pharm Anal, 2021, 11 (6): 717- 725.
doi: 10.1016/j.jpha.2021.01.003
21 Kuang Y , Li B , Fan J , et al. Antitussive and expectorant activities of licorice and its major compounds[J]. Bioorg Med Chem, 2018, 26 (1): 278- 284.
doi: 10.1016/j.bmc.2017.11.046
22 Shang ZP , Xu LL , Xiao Y , et al. A global profiling strategy using comprehensive two-dimensional liquid chromatography coupled with dual-mass spectrometry platforms: Chemical analysis of a multi-herb Chinese medicine formula as a case study[J]. J Chromatogr A, 2021, 1642, 462021.
doi: 10.1016/j.chroma.2021.462021
23 Song W , Qiao X , Chen K , et al. Biosynthesis-based quantitative analysis of 151 secondary metabolites of licorice to differentiate medicinal Glycyrrhiza species and their hybrids[J]. Anal Chem, 2017, 89 (5): 3146- 3153.
doi: 10.1021/acs.analchem.6b04919
24 Wang S , Qian Y , Sun M , et al. Holistic quality evaluation of Saposhnikoviae Radix (Saposhnikovia divaricata) by reversed-phase ultra-high performance liquid chromatography and hydrophi-lic interaction chromatography coupled with ion mobility quadrupole time-of-flight mass spectrometry-based untargeted metabolomics[J]. Arab J Chem, 2020, 13 (12): 8835- 8847.
doi: 10.1016/j.arabjc.2020.10.013
25 Bai Y , Zheng Y , Pang W , et al. Identification and comparison of constituents of Aurantii Fructus and Aurantii Fructus Immaturus by UFLC-DAD-Triple TOF-MS/MS[J]. Molecules, 2018, 23 (4): 1- 15.
26 Chu S , Chen L , Xie H , et al. Comparative analysis and chemical profiling of different forms of Peucedani Radix[J]. J Pharmaceut Biomed Anal, 2020, 189, 113410.
doi: 10.1016/j.jpba.2020.113410
27 Wan M , Zhang Y , Yang Y , et al. Analysis of the chemical composition of Angelicae Pubescentis Radix by ultra-performance liquid chromatography and quadrupole time-of-flight tandem mass spectrometry[J]. J Chin Pharm Sci, 2019, 28 (3): 145- 159.
doi: 10.5246/JCPS.2019.03.014
28 Huang W , Zhou H , Yuan M , et al. Comprehensive characterization of the chemical constituents in Platycodon grandiflorum by an integrated liquid chromatography-mass spectrometry strategy[J]. J Chromatogr A, 2021, 1654, 462477.
doi: 10.1016/j.chroma.2021.462477
29 郭敏娜, 刘素香, 赵艳敏, 等. 基于HPLC-Q-TOF-MS技术的柴胡化学成分分析[J]. 中草药, 2016, 12 (47): 2044- 2052.
30 郑单单, 魏文峰, 霍金海, 等. 基于UPLC-Q-TOF-MS技术的芪风固表颗粒血清药物化学研究[J]. 中草药, 2021, 52 (3): 643- 652.
31 魏飞亭, 程昊, 乔日发, 等. UPLC-Q-TOF/MS鉴定大鼠灌服枳壳提取物后的入血成分及其代谢产物[J]. 中国实验方剂学杂志, 2020, 26 (21): 161- 172.
[1] 康志宇,王磊磊,韩永正,郭向阳. 北京冬季奥林匹克运动会运动员手术的麻醉管理[J]. 北京大学学报(医学版), 2022, 54(4): 770-773.
[2] 陈明隆,刘笑晗,郭静. 新型冠状病毒肺炎疫情下儿童父母社会支持与养育倦怠的关系[J]. 北京大学学报(医学版), 2022, 54(3): 520-525.
[3] 李秋钰,程秦,赵志伶,代妮妮,曾琳,朱兰,郭炜,李超,王军红,李姝,葛庆岗,沈宁. 肾移植术后感染新型冠状病毒1例[J]. 北京大学学报(医学版), 2020, 52(4): 780-784.
[4] 杨航,杨林承,张瑞涛,凌云鹏,葛庆岗. 合并高血压、冠心病、糖尿病的新型冠状病毒肺炎患者发生病死的危险因素分析[J]. 北京大学学报(医学版), 2020, 52(3): 420-424.
[5] 陈美恋,高燕,郭维,左力,王天兵. 新型冠状病毒肺炎患者床旁血液净化治疗的感染防控[J]. 北京大学学报(医学版), 2020, 52(3): 414-419.
[6] 邢燕,张娟,韩彤妍,李在玲,李蕊,童笑梅. 新型冠状病毒感染肺炎疫情下综合医院儿科防控方式探索[J]. 北京大学学报(医学版), 2020, 52(3): 410-413.
[7] 屠鹏飞, 郭洪祝, 果德安. 中药与天然药物活性成分研究及新药的发现[J]. 北京大学学报(医学版), 2002, 34(5): 513-518.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王军, 肖水芳, 秦永, 王全桂, 陈丽. 以面神经麻痹为首诊表现的Wegener肉芽肿病一例[J]. 北京大学学报(医学版), 2007, 39(4): 434 -436 .
[2] 柳晓辉, 那加, 刘玲玲, 罗斌. 头颈部血管肉瘤3例[J]. 北京大学学报(医学版), 2001, 33(3): 288 -289 .
[3] 张震康. 口腔医学科学研究的重要进展和方向[J]. 北京大学学报(医学版), 2002, 34(2): 97 -98 .
[4] 梁成, 王兴, 伊彪, 李自力, 王晓霞. 骨性颞下颌关节强直伴小颌畸形及阻塞性睡眠呼吸暂停综合征的牵引成骨治疗[J]. 北京大学学报(医学版), 2002, 34(2): 112 -116 .
[5] 张勇, 栾庆先. 牙周维护治疗在保持牙周长期疗效中的作用[J]. 北京大学学报(医学版), 2011, 43(1): 29 -33 .
[6] 夏永华, 刘冬, 张彩凤, 付丹丹, 李敏, 李占国, 田中伟. NF-κB信号通路的阻断对皮肤鳞癌SCL-1细胞凋亡的影响[J]. 北京大学学报(医学版), 2011, 43(2): 179 -182 .
[7] 孙宇, 刘毅强, 冯国双, 李吉友. 转化生长因子β1在萎缩性胃炎发生中的作用[J]. 北京大学学报(医学版), 2009, 41(6): 635 -639 .
[8] 张少衡, 贾竹青, 郭静萱, 张萍, 马康涛, 王淑玲, 刘永刚, 李凌松, 周春燕. 骨髓细胞移植上调血管内皮生长因子及其受体的表达并改善缺血心脏功能[J]. 北京大学学报(医学版), 2003, 35(4): 429 -433 .
[9] 李文海, 张建中. 二期梅毒皮疹中梅毒螺旋体基因检测和浸润细胞研究[J]. 北京大学学报(医学版), 2003, 35(5): 485 -487 .
[10] 李海霞, 屈晨雪, 徐国宾, 闫存玲, 张国华, 李传保, 王建中, 夏铁安. 检验科SARS标本检测安全管理介绍[J]. 北京大学学报(医学版), 2003, 35(z1): 92 -94 .