北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (6): 1007-1012. doi: 10.19723/j.issn.1671-167X.2023.06.008

• 论著 • 上一篇    下一篇

干燥综合征患者发生重症新型冠状病毒肺炎的早期预测

李建斌1,吕梦娜2,池强1,彭一琳1,刘鹏程1,吴锐1,*()   

  1. 1. 南昌大学第一附属医院风湿免疫科, 南昌 330006
    2. 南昌大学第一临床医学院, 南昌 330006
  • 收稿日期:2023-08-13 出版日期:2023-12-18 发布日期:2023-12-11
  • 通讯作者: 吴锐 E-mail:tcmclinic@163.com

Early prediction of severe COVID-19 in patients with Sjögren’s syndrome

Jian-bin LI1,Meng-na LYU2,Qiang CHI1,Yi-lin PENG1,Peng-cheng LIU1,Rui WU1,*()   

  1. 1. Department of Rheumatology and Immunology, the first affiliated Hospital of Nanchang University, Nanchang 330006, China
    2. The First Clinical Medical College of Nanchang University, Nanchang 330006, China
  • Received:2023-08-13 Online:2023-12-18 Published:2023-12-11
  • Contact: Rui WU E-mail:tcmclinic@163.com

摘要:

目的: 探讨血细胞比值及炎症指标对干燥综合征(primary Sjögren’ s syndrome,PSS)合并新型冠状病毒肺炎(coronavirus disease 2019,COVID-19)预后不良的预测价值。方法: 选择2022年12月至2023年2月在南昌大学第一附属医院风湿免疫科就诊并具有所需完整临床资料的80例干燥综合征合并COVID-19患者进行回顾性分析,纳入标准: (1)符合2019年美国风湿病学会(American College of Rheumatology,ACR)干燥综合征诊断标准;(2)经实时逆转录聚合酶链式反应严重急性呼吸综合征冠状病毒2核酸检测或抗原检测确诊的COVID-19患者; (3)有所需完整临床资料;(4)年龄>18岁。依据《新型冠状病毒肺炎诊疗方案(试行第十版)》临床分型标准,将轻型、普通型患者合为轻症组,重型及危重型合为重症组。干燥综合征疾病活动判定方法参考欧洲抗风湿病联盟(European League Against Rheumatism,EULAR)制定的干燥综合征病情评估指数(EULAR Sjögren’ s syndrome disease activity index,ESSDAI)评分。比较两组患者感染后24~72 h内的血小板-淋巴细胞比值(platelet-lymphocyte ratio,PLR)和C反应蛋白-淋巴细胞比值(C-reactive protein-lymphocyte ratio,CLR)及红细胞沉降率(erythrocyte sedimentation rate,ESR)、C反应蛋白(C-reactive protein,CRP)等实验室资料。结果: 轻症组66例,平均年龄(51.52±13.16)岁;重症组14例,平均年龄(52.64±10.20)岁。重症组患者的疾病活动度、CRP、血小板、PLR和CLR明显高于轻症组(P<0.05)。以轻、重症为因变量,分别以年龄、疾病活动度、CRP、血小板、PLR和CLR作为自变量进行单因素分析,提示疾病活动、CRP、PLR和CLR与COVID-19的严重程度相关(P<0.05)。多因素二元Logisitic回归分析进一步证实PLR(OR=1.016,P<0.05)、CLR(OR=1.504,P<0.05)是COVID-19重症患者的独立危险因素。ROC曲线分析显示PLR和CLR的曲线下面积分别为0.708(95%CI: 0.588~0.828)和0.725(95%CI: 0.578~0.871),敏感度分别为0.429和0.803,特异度分别为0.714和0.758,PLR和CLR的最佳分界值分别为166.214和0.870。结论: PLR和CLR,尤其是CLR,或许是预测干燥综合征患者COVID-19预后的简易而有效的指标。

关键词: 干燥综合征, 新型冠状病毒肺炎, 预后, 血小板-淋巴细胞比值, C反应蛋白-淋巴细胞比值

Abstract:

Objective: To investigate the predictive value of blood cell ratios and inflammatory markers for adverse prognosis in patients with primary Sjögren’s syndrome (PSS) combined with coronavirus disease 2019 (COVID-19). Methods: We retrospectively collected clinical data from 80 patients with PSS and COVID-19 who visited the Rheumatology and Immunology Department of the First Affiliated Hospital of Nanchang University from December 2022 to February 2023. Inclusion criteria were (1) meeting the American College of Rheumatology (ACR) classification criteria for Sjögren’s syndrome; (2) confirmed diagnosis of COVID-19 by real-time reverse transcription polymerase chain reaction or antigen testing for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); (3) availability of necessary clinical data; (4) age > 18 years. According to the clinical classification criteria of the "Diagnosis and Treatment Protocol for Novel Coronavirus Pneumonia (trial the 10th Revised Edition)", the patients were divided into the mild and severe groups. Disease activity in primary Sjögren' s syndrome was assessed using the European League Against Rheumatism (EULAR) Sjögren' s syndrome disease activity index (ESSDAI). Platelet-lymphocyte ratio (PLR), C-reactive protein-lymphocyte ratio (CLR), erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), and other laboratory data were compared between the two groups within 24-72 hours post-infection. Results: The mild group consisted of 66 cases with an average age of (51. 52±13. 16) years, and the severe group consisted of 14 cases with an average age of (52.64±10.20) years. Disease activity, CRP, platelets, PLR, and CLR were significantly higher in the severe group compared with the mild group (P < 0.05). Univariate analysis using age, disease activity, CRP, platelets, PLR, and CLR as independent variables indicated that disease activity, CRP, PLR, and CLR were correlated with the severity of COVID-19 (P < 0.05). Multivariate logistic regression analysis further confirmed that PLR (OR=1.016, P < 0.05) and CLR (OR=1.504, P < 0.05) were independent risk factors for the severity of COVID-19 in the critically ill patients. Receiver operator characteristic (ROC) curve analysis showed that the area under the curve (AUC) for PLR and CLR was 0.708 (95%CI: 0.588-0.828) and 0.725 (95%CI: 0.578-0.871), respectively. The sensitivity for PLR and CLR was 0.429 and 0.803, respectively, while the highest specificity was 0.714 and 0.758, respectively. The optimal cutoff values for PLR and CLR were 166.214 and 0.870, respectively. Conclusion: PLR and CLR, particularly the latter, may serve as simple and effective indicators for predicting the prognosis of patients with PSS and COVID-19.

Key words: Primary Sjögren's syndrome, Coronavirus disease 2019 (COVID-19), Prognosis, Platelet-lymphocyte ratio, C-reactive protein-lymphocyte ratio

中图分类号: 

  • R593.2

表1

两组患者一般资料比较"

Parameters Mild group (n=66) Severe group (n=14) t/χ2/Z P
Age/years, ${\bar x}$±s 51.52±13.16 52.64±10.20 -0.301 0.764
Gender, n(%) 0.653 0.516
    Male 2 (3) 0 (0)
    Female 64 (97) 14 (100)
Disease activity, n(%) 5 (7) 6 (42.82) -3.549 0.001
ESR/(mg/L), ${\bar x}$±s 18.42±9.83 17.86±10.29 0.193 8.848
CRP/(μmol/L), M(P25P75) 0.72 (0.20,1.68) 1.54 (0.54,9.40) -2.463 0.014
White blood cells/(×109/L), ${\bar x}$±s 5.86±1.95 5.06±1.42 1.447 0.152
Platelets/(×109/L), ${\bar x}$±s 213.42±69.08 253.86±61.02 -2.027 0.046
Monocytes/(×109/L), M(P25P75) 0.34 (0.28,0.54) 0.34 (0.29,0.56) -0.120 0.904
Lymphocytes/(×109/L), ${\bar x}$±s 1.79±0.65 1.59±0.41 1.115 0.268
Neutrophils/(×109/L), M(P25P75) 3.45 (2.32,4.52) 2.94 (2.59,3.98) -0.684 0.494
Immunoglobulin G/(g/L), ${\bar x}$±s 15.21±4.68 14.32±2.66 0.586 0.560
Immunoglobulin A/(g/L), ${\bar x}$±s 2.79±0.94 2.52±1.27 0.781 0.438
Immunoglobulin M/(g/L), ${\bar x}$±s 1.47±1.06 1.18±0.43 0.857 0.395
Complement C3(g/L), ${\bar x}$±s 0.79±0.12 0.73±0.10 1.309 0.196
Complement C4(g/L), ${\bar x}$±s 0.19±0.05 0.20±0.06 -0.532 0.597
NLR, ${\bar x}$±s 2.38±2.21 2.14±1.15 0.408 0.685
PLR, ${\bar x}$±s 129.95±51.73 163.92±37.90 -2.324 0.023
CLR, M(P25P75) 0.42 (0.18,0.88) 1.02 (0.37,4.99) -2.628 0.009
LMR, ${\bar x}$±s 4.75±2.20 4.34±1.52 0.665 0.508
Disease course/years, ${\bar x}$±s 6.96±5.08 9.57±4.03 -1.772 0.081
Medication
    Corticosteroids, n(%) 31 (46.97) 8 (57.14) -0.090 0.928
    Methylprednisolone, n(%) 10 (15.15) 3 (21.42) -0.214 0.831
    Hydroxychloroquine, n(%) 24 (36.36) 7 (50) -0.312 0.755
    Cyclosporine, n(%) 3 (4.54) 0 (0) -0.904 0.366

表2

PSS合并COVID-19患者严重程度分型的独立危险因素"

Parameters β SE Wald P OR 95%CI
Disease Activitya 1.597 0.822 3.775 0.052 4.909 0.986-24.752
CRPa 0.186 0.102 3.349 0.067 1.205 0.987-1.471
PLRa,b 0.015 0.007 5.146 0.023 1.016 1.002-1.029
CLRb 0.408 0.166 5.983 0.014 1.504 1.084-2.085

图1

PLR和CLR预测PSS合并COVID-19患者发生重症的ROC曲线分析"

1 Wiersinga WJ , Rhodes A , Cheng AC , et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19): A review[J]. JAMA, 2020, 324 (8): 782- 793.
doi: 10.1001/jama.2020.12839
2 Yüce M , Filiztekin E , Özkaya KG . COVID-19 diagnosis: A review of current methods[J]. Biosens Bioelectron, 2021, 172, 112752.
doi: 10.1016/j.bios.2020.112752
3 Pablos JL , Galindo M , Carmona L , et al. Clinical outcomes of hospitalised patients with COVID-19 and chronic inflammatory and autoimmune rheumatic diseases: A multicentric matched cohort study[J]. Ann Rheum Dis, 2020, 79 (12): 1544- 1549.
doi: 10.1136/annrheumdis-2020-218296
4 Luo H , Zhou X . Bioinformatics analysis of potential common pathogenic mechanisms for COVID-19 infection and primary Sjögren’s syndrome[J]. Front Immunol, 2022, 13, 938837.
doi: 10.3389/fimmu.2022.938837
5 Brito-Zerón P , Acar-Denizli N , Zeher M , et al. Influence of geolocation and ethnicity on the phenotypic expression of primary Sjögren’s syndrome at diagnosis in 8 310 patients: A cross-sectional study from the big data Sjögren project consortium[J]. Ann Rheum Dis, 2017, 76 (6): 1042- 1050.
doi: 10.1136/annrheumdis-2016-209952
6 Mariette X , Criswell LA . Primary Sjögren’s syndrome[J]. N Engl J Med, 2018, 378 (10): 931- 939.
doi: 10.1056/NEJMcp1702514
7 Zhang G , Hu C , Luo L , et al. Clinical features and short-term outcomes of 221 patients with COVID-19 in Wuhan, China[J]. J Clin Virol, 2020, 127, 104364.
doi: 10.1016/j.jcv.2020.104364
8 Russell CD , Parajuli A , Gale HJ , et al. The utility of peripheral blood leucocyte ratios as biomarkers in infectious diseases: A systematic review and meta-analysis[J]. J Infect, 2019, 78 (5): 339- 348.
doi: 10.1016/j.jinf.2019.02.006
9 Qu R , Ling Y , Zhang YH , et al. Platelet-to-lymphocyte ratio is associated with prognosis in patients with coronavirus disease-19[J]. J Med Virol, 2020, 92 (9): 1533- 1541.
doi: 10.1002/jmv.25767
10 Lagunas-Rangel FA . Neutrophil-to-lymphocyte ratio and lymphocyte-to-C-reactive protein ratio in patients with severe coronavirus disease 2019 (COVID-19): A meta-analysis[J]. J Med Virol, 2020, 92 (10): 1733- 1734.
doi: 10.1002/jmv.25819
11 Shiboski CH , Shiboski SC , Seror R , et al. 2016 American College of Rheumatology/European League Against Rheumatism classification criteria for primary Sjögren’s syndrome: A consensus and data-driven methodology involving three international patient cohorts[J]. Arthritis Rheumatol, 2017, 69 (1): 35- 45.
doi: 10.1002/art.39859
12 中华人民共和国国家卫生健康委员会. 新型冠状病毒感染诊疗方案(试行第十版)[J]. 中国合理用药探索, 2023, 20 (1): 1- 11.
13 Seror R , Bowman SJ , Brito-Zeron P , et al. Eular Sjögren' s syndrome disease activity index (ESSDAI): A user guide[J]. RMD Open, 2015, 1 (1): e000022.
doi: 10.1136/rmdopen-2014-000022
14 Sacks D , Baxter B , Campbell BCV , et al. Multisociety consensus quality improvement revised consensus statement for endovascular therapy of acute ischemic stroke: From the American Association of Neurological Surgeons (AANS), American Society of Neuroradiology (ASNR), Cardiovascular and Interventional Radiology Society of Europe (CIRSE), Canadian Interventional Radiology Association (CIRA), Congress of Neurological Surgeons (CNS), European Society of Minimally Invasive Neurological Therapy (ESMINT), European Society of Neuroradiology (ESNR), European Stroke Organization (ESO), Society for Cardiovascular Angiography and Interventions (SCAI), Society of Interventional Radiology (SIR), Society of NeuroInterventional Surgery (SNIS), and World Stroke Organization (WSO)[J]. J Vasc Interv Radiol, 2018, 29 (4): 441- 453.
doi: 10.1016/j.jvir.2017.11.026
15 Del Valle DM , Kim-Schulze S , Huang HH , et al. An inflammatory cytokine signature predicts COVID-19 severity and survival[J]. Nat Med, 2020, 26 (10): 1636- 1643.
doi: 10.1038/s41591-020-1051-9
16 Xiang N , Havers F , Chen T , et al. Use of national pneumonia surveillance to describe influenza A(H7N9) virus epidemiology, China, 2004-2013[J]. Emerg Infect Dis, 2013, 19 (11): 1784- 1790.
17 Kaya T , Nalbant A , Kılıçıoǧlu GK , et al. The prognostic signi-ficance of erythrocyte sedimentation rate in COVID-19[J]. Rev Assoc Med Bras (1992), 2021, 67 (9): 1305- 1310.
doi: 10.1590/1806-9282.20210618
18 Lapić I , Rogić D , Plebani M . Erythrocyte sedimentation rate is associated with severe coronavirus disease 2019 (COVID-19): A pooled analysis[J]. Clin Chem Lab Med, 2020, 58 (7): 1146- 1148.
doi: 10.1515/cclm-2020-0620
19 Roescher N , Tak PP , Illei GG . Cytokines in Sjögren’s syndrome[J]. Oral Dis, 2009, 15 (8): 519- 526.
doi: 10.1111/j.1601-0825.2009.01582.x
20 Tahir Huyut M , Huyut Z , lkbahar F , et al. What is the impact and efficacy of routine immunological, biochemical and hemato-logical biomarkers as predictors of COVID-19 mortality[J]. Int Immunopharmacol, 2022, 105, 108542.
doi: 10.1016/j.intimp.2022.108542
21 Amgalan A , Othman M . Hemostatic laboratory derangements in COVID-19 with a focus on platelet count[J]. Platelets, 2020, 31 (6): 740- 745.
doi: 10.1080/09537104.2020.1768523
22 Tural Onur S , Altın S , Sokucu SN , et al. Could ferritin level be an indicator of COVID-19 disease mortality[J]. J Med Virol, 2021, 93 (3): 1672- 1677.
doi: 10.1002/jmv.26543
23 Ardestani A , Azizi Z . Targeting glucose metabolism for treatment of COVID-19[J]. Signal Transduct Target Ther, 2021, 6 (1): 112.
doi: 10.1038/s41392-021-00532-4
24 Wang K , Zhang Z , Yu M , et al. 15-day mortality and associated risk factors for hospitalized patients with COVID-19 in Wuhan, China: An ambispective observational cohort study[J]. Intensive Care Med, 2020, 46 (7): 1472- 1474.
doi: 10.1007/s00134-020-06047-w
25 Zhang JJ , Cao YY , Tan G , et al. Clinical, radiological, and laboratory characteristics and risk factors for severity and mortality of 289 hospitalized COVID-19 patients[J]. Allergy, 2021, 76 (2): 533- 550.
doi: 10.1111/all.14496
26 Manne BK , Denorme F , Middleton EA , et al. Platelet gene expression and function in patients with COVID-19[J]. Blood, 2020, 136 (11): 1317- 1329.
doi: 10.1182/blood.2020007214
27 Pormohammad A , Ghorbani S , Baradaran B , et al. Clinical characteristics, laboratory findings, radiographic signs and outcomes of 61, 742 patients with confirmed COVID-19 infection: A systematic review and meta-analysis[J]. Microb Pathog, 2020, 147, 104390.
doi: 10.1016/j.micpath.2020.104390
28 Yang X , Yang Q , Wang Y , et al. Thrombocytopenia and its association with mortality in patients with COVID- 19[J]. J Thromb Haemost, 2020, 18 (6): 1469- 1472.
doi: 10.1111/jth.14848
29 Jiang SQ , Huang QF , Xie WM , et al. The association between severe COVID-19 and low platelet count: evidence from 31 observational studies involving 7 613 participants[J]. Br J Haematol, 2020, 190 (1): e29- e33.
doi: 10.1111/bjh.16794
30 Xu Z , Shi L , Wang Y , et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome[J]. Lancet Respir Med, 2020, 8 (4): 420- 422.
doi: 10.1016/S2213-2600(20)30076-X
31 Shi H , Wang W , Yin J , et al. The inhibition of IL-2/IL-2R gives rise to CD8+ T cell and lymphocyte decrease through JAK1-STAT5 in critical patients with COVID-19 pneumonia[J]. Cell Death Dis, 2020, 11 (6): 429.
doi: 10.1038/s41419-020-2636-4
32 Liu K , Yang T , Peng XF , et al. A systematic meta-analysis of immune signatures in patients with COVID-19[J]. Rev Med Virol, 2021, 31 (4): e2195.
doi: 10.1002/rmv.2195
33 Bohn MK , Lippi G , Horvath A , et al. Molecular, serological, and biochemical diagnosis and monitoring of COVID-19: IFCC taskforce evaluation of the latest evidence[J]. Clin Chem Lab Med, 2020, 58 (7): 1037- 1052.
doi: 10.1515/cclm-2020-0722
34 Xu H , Zhong L , Deng J , et al. High expression of ACE2 receptor of 2019-nCoV on the epithelial cells of oral mucosa[J]. Int J Oral Sci, 2020, 12 (1): 8.
doi: 10.1038/s41368-020-0074-x
35 Gu X , Sha L , Zhang S , et al. Neutrophils and lymphocytes can help distinguish asymptomatic COVID-19 from moderate COVID-19[J]. Front Cell Infect Microbiol, 2021, 11, 654272.
doi: 10.3389/fcimb.2021.654272
36 Tan L , Wang Q , Zhang D , et al. Lymphopenia predicts disease severity of COVID-19: A descriptive and predictive study[J]. Signal Transduct Target Ther, 2020, 5 (1): 33.
doi: 10.1038/s41392-020-0148-4
37 Yıldız F , Gökmn O . Haematologic indices and disease activity index in primary Sjögren’s syndrome[J]. Int J Clin Pract, 2021, 75 (3): e13992.
38 Damar Çakırca T , Torun A , Çakırca G , et al. Role of NLR, PLR, ELR and CLR in differentiating COVID-19 patients with and without pneumonia[J]. Int J Clin Pract, 2021, 75 (11): e14781.
39 Sarkar S , Kannan S , Khanna P , et al. Role of platelet-to-lymphocyte count ratio (PLR), as a prognostic indicator in COVID-19: A systematic review and meta-analysis[J]. J Med Virol, 2022, 94 (1): 211- 221.
doi: 10.1002/jmv.27297
40 Mertoglu C , Huyut MT , Arslan Y , et al. How do routine laboratory tests change in coronavirus disease 2019[J]. Scand J Clin Lab Invest, 2021, 81 (1): 24- 33.
doi: 10.1080/00365513.2020.1855470
41 Ben Jemaa A , Salhi N , Ben Othmen M , et al. Evaluation of individual and combined NLR, LMR and CLR ratio for prognosis disease severity and outcomes in patients with COVID-19[J]. Int Immunopharmacol, 2022, 109, 108781.
doi: 10.1016/j.intimp.2022.108781
[1] 韩艺钧,李常虹,陈秀英,赵金霞. 抗SSB抗体阳性和阴性的原发性干燥综合征患者临床及免疫学特征的比较[J]. 北京大学学报(医学版), 2023, 55(6): 1000-1006.
[2] 吴洁,张雯,梁舒,秦艺璐,范文强. 妊娠期原发性干燥综合征合并视神经脊髓炎谱系疾病危重症1例[J]. 北京大学学报(医学版), 2023, 55(6): 1118-1124.
[3] 王丽芳,石连杰,宁武,高乃姝,王宽婷. 干燥综合征合并冷凝集素病1例[J]. 北京大学学报(医学版), 2023, 55(6): 1130-1134.
[4] 孟彦宏,陈怡帆,周培茹. CENP-B抗体阳性的原发性干燥综合征患者的临床和免疫学特征[J]. 北京大学学报(医学版), 2023, 55(6): 1088-1096.
[5] 薛子璇,唐世英,邱敏,刘承,田晓军,陆敏,董靖晗,马潞林,张树栋. 青年肾肿瘤伴瘤栓的临床病理特征及预后分析[J]. 北京大学学报(医学版), 2023, 55(5): 802-811.
[6] 刘欢锐,彭祥,李森林,苟欣. 基于HER-2相关基因构建风险模型用于膀胱癌生存预后评估[J]. 北京大学学报(医学版), 2023, 55(5): 793-801.
[7] 赖金惠,王起,姬家祥,王明瑞,唐鑫伟,许克新,徐涛,胡浩. 新型冠状病毒肺炎疫情期间延迟拔除输尿管支架对泌尿系结石术后患者生活质量和心理状态的影响[J]. 北京大学学报(医学版), 2023, 55(5): 857-864.
[8] 邢海霞,王琳,乔迪,刘畅,潘洁. 干燥综合征口腔疾病的治疗特点[J]. 北京大学学报(医学版), 2023, 55(5): 929-933.
[9] 卢汉,张建运,杨榕,徐乐,李庆祥,郭玉兴,郭传瑸. 下颌牙龈鳞状细胞癌患者预后的影响因素[J]. 北京大学学报(医学版), 2023, 55(4): 702-707.
[10] 时云飞,王豪杰,刘卫平,米岚,龙孟平,刘雁飞,赖玉梅,周立新,刁新婷,李向红. 血管免疫母细胞性T细胞淋巴瘤临床与分子病理学特征分析[J]. 北京大学学报(医学版), 2023, 55(3): 521-529.
[11] 朱晓娟,张虹,张爽,李东,李鑫,徐玲,李挺. 人表皮生长因子受体2低表达乳腺癌的临床病理学特征及预后[J]. 北京大学学报(医学版), 2023, 55(2): 243-253.
[12] 赖玉梅,李忠武,李欢,吴艳,时云飞,周立新,楼雨彤,崔传亮. 68例肛管直肠黏膜黑色素瘤临床病理特征及预后[J]. 北京大学学报(医学版), 2023, 55(2): 262-269.
[13] 沈棋,刘亿骁,何群. 肾黏液样小管状和梭形细胞癌的临床病理特点及预后[J]. 北京大学学报(医学版), 2023, 55(2): 276-282.
[14] 宿骞,彭歆,周传香,俞光岩. 369例口腔颌面部非霍奇金淋巴瘤的临床病理特点及预后[J]. 北京大学学报(医学版), 2023, 55(1): 13-21.
[15] 张铨,宋海峰,马冰磊,张喆楠,周朝晖,李傲林,刘军,梁磊,朱时雨,张骞. 术前预后营养指数可作为预测非转移性肾细胞癌预后的指标[J]. 北京大学学报(医学版), 2023, 55(1): 149-155.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!