北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (6): 1202-1207. doi: 10.19723/j.issn.1671-167X.2022.06.024
开地尔娅·阿不都热合曼,张荣赓,钱浩楠,邹振洋,丹尼娅·叶斯涛,范田园*()
ABUDUREHEMAN Kaidierya,Rong-geng ZHANG,Hao-nan QIAN,Zhen-yang ZOU,YESITAO Danniya,Tian-yuan FAN*()
摘要:
目的: 探究以熔融沉积成型(fused deposition modeling,FDM)3D打印技术制备用于个性化治疗的不同剂量片剂的可行性,并对所制备的FDM 3D打印片剂进行相关的体外质量评价。方法: 采用聚乙烯醇(polyvinyl alcohol,PVA)丝材,通过FDM 3D打印技术制备中空的、三种大小的片剂外壳;以茶碱为模型药物,将20、50和100 mg三种剂量的茶碱分别填充于片剂的空腔内。以扫描电镜(scanning electron microscopy,SEM)观察制剂的外观形态,以称重法考察片剂的质量差异,以片剂硬度测定仪测定片剂的硬度,采用紫外-可见分光光度法(ultraviolet and visible spectrophotometry, UV-Vis)测定片剂中的药物含量,并用溶出仪对片剂的体外释药行为进行表征。结果: 制备出的FDM 3D打印片剂形态良好,无打印缺陷,片剂的直径与厚度均与设计相符,扫描电镜观察可以看出层与层之间紧密连接,能清晰观察到制剂的细微结构;三种大小的片剂平均质量分别为(150.5±2.3) mg、(293.6±2.6) mg和(456.2±5.6) mg,其质量差异均低于5%;片剂的硬度均超过了200 N;测得三种片剂中茶碱含量分别为加入量(20、50和100 mg)的98.2%、97.2%和97.9%,相对标准偏差分别为1.06%、1.15%和0.63%;三种剂量片剂释药80%的时间均在30 min以内。结论: 采用FDM 3D打印技术成功制备了20、50和100 mg三种不同剂量的茶碱片剂, 且打印的茶碱片剂质量良好。
中图分类号:
1 |
Huang Y , Leu MC , Mazumder J , et al. Additive manufacturing: Current state, future potential, gaps and needs, and recommendations[J]. J Manuf Sci Eng, 2015, 137 (1): 014001.
doi: 10.1115/1.4028725 |
2 | Crump SS. Apparatus and method for creating three-dimensional objects, EP0426363A2[P], 1991.05.08. |
3 |
Brambilla CRM , Okafor-Muo OL , Hassanin H , et al. 3D printing of oral solid formulations: A systematic review[J]. Pharmaceutics, 2021, 13 (3): 358.
doi: 10.3390/pharmaceutics13030358 |
4 | 支气管哮喘防治指南(2020年版)[J]. 中华结核和呼吸杂志, 2020, 43(12): 1023-1048. |
5 | 国家药典委员会. 中华人民共和国药典: 二部[M]. 北京: 中国医药科技出版社, 2020: 132. |
6 | Afsana , Jain V , Haider N , et al. 3D printing in personalized drug delivery[J]. Cur Pharm Des, 2018, 24 (42): 5062- 5071. |
7 | Fanous M , Gold S , Hirsch S , et al. Development of immediate release (IR) 3D-printed oral dosage forms with focus on industrial relevance[J]. Eur J Pharm Sci, 2020, 155 (12): 105558. |
8 |
Kempin W , Domsta V , Grathoff G , et al. Immediate release 3D-printed tablets produced via fused deposition modeling of a thermo-sensitive drug[J]. Pharm Res, 2018, 35 (6): 124.
doi: 10.1007/s11095-018-2405-6 |
9 | Wang Y, Sun L, Mei Z, et al. 3D printed biodegradable implants as an individualized drug delivery system for local chemotherapy of osteosarcoma[J/OL]. Mater Design, 2020[2021-09-01]. https://doi.org/10.1016/j.matdes.2019.108336. |
10 |
Alomari M , Mohamed FH , Basit AW , et al. Personalised dosing: Printing a dose of one's own medicine[J]. Int J Pharm, 2015, 494 (2): 568- 577.
doi: 10.1016/j.ijpharm.2014.12.006 |
11 | Wening K , Breitkreutz J . Novel delivery device for monolithical solid oral dosage forms for personalized medicine[J]. Int J Pharm, 2010, 395 (1/2): 174- 181. |
12 | Wening K , Breitkreutz J . Oral drug delivery in personalized medicine: unmet needs and novel approaches[J]. Int J Pharm, 2011, 404 (1/2): 1- 9. |
13 |
Martin KS , McPherson TB , Fontane PE , et al. Independent community pharmacists' perspectives on compounding in contemporary pharmacy education[J]. Am J Pharm Educ, 2009, 73 (3): 54.
doi: 10.5688/aj730354 |
14 | Pietrzak K , Isreb A , Alhnan MA . A flexible-dose dispenser for immediate and extended release 3D printed tablets[J]. Eur J Pharm Biopharm, 2015, 969 (10): 380- 387. |
15 | Kyobula M , Adedeji A , Alexander MR , et al. 3D inkjet printing of tablets exploiting bespoke complex geometries for controlled and tuneable drug release[J]. J Control Release, 2017, 261 (9): 207- 215. |
16 |
Konta AA , García-Piña M , Serrano DR . Personalised 3D printed medicines: Which techniques and polymers are more successful[J]. Bioengineering, 2017, 4 (4): 79.
doi: 10.3390/bioengineering4040079 |
17 |
Tan DK , Maniruzzaman M , Nokhodchi A . Advanced pharmaceutical applications of hot-melt extrusion coupled with fused deposition modelling (FDM) 3d printing for personalised drug delivery[J]. Pharmaceutics, 2018, 10 (4): 203.
doi: 10.3390/pharmaceutics10040203 |
18 | Okwuosa TC , Soares C , Gollwitzer V , et al. On demand manufacturing of patient-specific liquid capsules via co-ordinated 3D printing and liquid dispensing[J]. Eur J Pharm Sci, 2018, 118 (6): 134- 143. |
19 | Fu JH , Yu X , Jin YG . 3D printing of vaginal rings with per-sonalized shapes for controlled release of progesterone[J]. Int J Pharm, 2018, 539 (1/2): 75- 82. |
20 | Florence AT , Lee VH . Personalised medicines: More tailored drugs, more tailored delivery[J]. Int J Pharm, 2011, 415 (1/2): 29- 33. |
21 | Lim SH , Kathuria H , Tan JJY , et al. 3D printed drug delivery and testing systems-a passing fad or the future[J]. Adv Drug Deliv Rev, 2018, 132 (7): 139- 168. |
22 |
Scoutaris N , Ross SA , Douroumis D . 3D printed "starmix" drug loaded dosage forms for paediatric applications[J]. Pharm Res, 2018, 35 (2): 34.
doi: 10.1007/s11095-017-2284-2 |
23 |
Wei C , Solanki NG , Vasoya JM , et al. Development of 3D printed tablets by fused deposition modeling using polyvinyl alcohol as polymeric matrix for rapid drug release[J]. J Pharm Sci, 2020, 109 (4): 1558- 1572.
doi: 10.1016/j.xphs.2020.01.015 |
24 |
Okwuosa TC , Stefaniak D , Arafat B , et al. A lower temperature 3d printing for the manufacture of patient-specific immediate release tablets[J]. Pharm Res, 2016, 33 (11): 2704- 2712.
doi: 10.1007/s11095-016-1995-0 |
25 | Kollamaram G , Croker DM , Walker GM , et al. Low temperature fused deposition modeling 3D printing of thermolabile drugs[J]. Int J Pharm, 2018, 545 (1/2): 144- 152. |
[1] | 展新新,曹露露,项东,汤皓,夏丹丹,林红. 成型方向对3D打印口腔义齿基托树脂材料物理性能及力学性能的影响[J]. 北京大学学报(医学版), 2024, 56(2): 345-351. |
[2] | 胡攀攀,李彦,刘啸,唐彦超,李梓赫,刘忠军. 自稳式人工椎体在颈椎前路手术中的应用[J]. 北京大学学报(医学版), 2024, 56(1): 161-166. |
[3] | 周华,王仁吉,刘忠军,刘晓光,吴奉梁,党礌,韦峰. 3D打印人工椎体在颈椎脊索瘤全脊椎切除术中的应用[J]. 北京大学学报(医学版), 2023, 55(1): 144-148. |
[4] | 李志胜,钱浩楠,范田园. 熔融沉积成型3D打印卡托普利与氢氯噻嗪复方片剂的制备与体外评价[J]. 北京大学学报(医学版), 2022, 54(3): 572-577. |
[5] | 孙玉春,郭雨晴,陈虎,邓珂慧,李伟伟. 口腔精准仿生修复技术的自主创新研发与转化[J]. 北京大学学报(医学版), 2022, 54(1): 7-12. |
[6] | 李君,刘旭红,王工,程程,庄洪卿,杨瑞杰. 手臂位置对射波刀放射治疗脊柱肿瘤患者的剂量学影响[J]. 北京大学学报(医学版), 2022, 54(1): 182-186. |
[7] | 陈迪,徐翔宇,汪明睿,李芮,臧根奥,张悦,钱浩楠,闫光荣,范田园. 熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价[J]. 北京大学学报(医学版), 2021, 53(2): 348-354. |
[8] | 孙海涛,杨瑞杰,江萍,姜伟娟,李金娜,孟娜,王俊杰. 乳腺癌保乳术后容积旋转调强和切线野调强放疗的剂量学比较[J]. 北京大学学报(医学版), 2018, 50(1): 188-192. |
[9] | 叶克强,黄明伟,李君利,唐劲天,张建国. 125I放射性粒子在骨介质中剂量分布的蒙特卡罗模拟[J]. 北京大学学报(医学版), 2018, 50(1): 131-135. |
[10] | 张达,王林川,周彦恒,刘晓默,李晶. 3D打印间接粘接托槽精度[J]. 北京大学学报(医学版), 2017, 49(4): 704-708. |
[11] | 王圣林,杨钟玮,闫明,刘忠军. 术中CT引导下寰枢椎复位、固定[J]. 北京大学学报(医学版), 2017, 49(3): 512-517. |
[12] | 郭福新,姜玉良,吉喆,彭冉,孙海涛,王俊杰. 3D打印非共面模板辅助CT引导125Ⅰ粒子植入治疗锁骨上复发转移癌的剂量学研究[J]. 北京大学学报(医学版), 2017, 49(3): 506-511. |
[13] | 冯雪茹,刘梅林,刘芳,范琰,田清平. 阿司匹林剂量对高龄老年患者血小板功能的影响[J]. 北京大学学报(医学版), 2016, 48(5): 835-840. |
[14] | 王庆国,李晓梅,张敏,李航,温冰,李洪振,高献书. 107例瘢痕疙瘩术后两种分割剂量放疗疗效分析[J]. 北京大学学报(医学版), 2014, 46(1): 169-172. |
[15] | 丁艳苓, 姚婉贞, 郑杰, 朱元莉, 刘政. 白三烯B4在慢性阻塞性肺疾病中的变化与氨茶碱对其的影响[J]. 北京大学学报(医学版), 2005, 37(4): 393-397. |
|