北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (1): 82-87. doi: 10.19723/j.issn.1671-167X.2023.01.012
Ruo-lan GUO,Gui-bin HUANG,Yun-zi LONG,Yan-mei DONG*()
摘要:
目的: 研究以植酸为前驱体合成的生物活性玻璃(phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses,PSC)和含氟生物活性玻璃(fluoride-containing bioactive glasses,FBG)这两种新型生物活性玻璃(bioactive glass,BG)对人工牙本质龋再矿化的作用,为促进牙本质龋再矿化寻找更有效的方法。方法: (1) PSC是以植酸为磷前驱体、采用溶胶凝胶法制备,其化学组成为10.8%P2O5-54.2%SiO2-35.0%CaO(摩尔百分比);FBG采用熔融法制备,化学组成为6.1%P2O5-37.0%SiO2-53.9%CaO-3.0%CaF2(摩尔百分比);传统生物活性玻璃45S5采用熔融法制备, 化学组成为6.0%P2O5-45.0%SiO2-24.5%CaO-24.5%Na2O(摩尔百分比)。(2) 将三种BG浸泡在模拟体液中24 h,使用X射线衍射(X-ray diffraction,XRD)分析BG表面羟基磷灰石形成情况。(3)制备厚度为1 mm的牙本质片,用17%(质量分数)的乙二胺四乙酸溶液(ethylene diamine tetraacetic acid,EDTA)浸泡1周,制备脱矿牙本质样本;使用PSC、FBG处理脱矿牙本质片后在模拟体液中浸泡1周,使用扫描电镜观察和检测样本表面矿物质的形成情况。(4)制备厚度为2 mm的牙本质片,每个样本上制备4个深度为1 mm的窝洞,使用乳酸溶液脱矿2周,制备人工牙本质龋样本。使用蜡块、无机三氧化物聚合体(mineral trioxide aggregate,MTA)、PSC和FBG充填四个窝洞,分别作为空白对照组、MTA组、PSC组和FBG组,随后浸泡在模拟体液中,分别于充填前、充填后2和4周使用显微CT对样本进行扫描,分析人工牙本质龋样本的再矿化情况。结果: (1) 扫描电镜和XRD结果显示,PSC和FBG促进脱矿牙本质再矿化的效果均优于45S5,尤以PSC组效果更佳。(2)显微CT结果显示,PSC组2周时人工牙本质龋脱矿层矿物质密度的增加量为(185.98±55.66) mg/cm3,4周时增加量为(213.64±36.01) mg/cm3,均与空白对照组[(20.38±7.55) mg/cm3,P=0.006;(36.46±10.79) mg/cm3,P=0.001]差异有统计学意义;PSC组增加量较MTA组[(57.29±10.09) mg/cm3;(111.02±22.06) mg/cm3]更高,且差异均有统计学意义(P=0.015;P=0.006)。对于人工牙本质龋再矿化深度,PSC组2周时为(40.0±16.9) μm,4周时达到(54.5±17.8) μm,与空白对照组相比均差异具有统计学意义(P=0.010;P=0.001);MTA组与空白对照组相比差异无统计学意义。FBG组矿物质沉积的量和深度均优于MTA组,但不及PSC组。结论: 新型生物活性玻璃PSC在促进人工牙本质龋脱矿层再矿化的速度、质量和深度上较MTA具有优势,有望成为促进龋坏组织再矿化的理想材料。
中图分类号:
1 |
Han L , Okiji T , Okawa S . Morphological and chemical analysis of different precipitates on mineral trioxide aggregate immersed in different fluids[J]. Dent Mater J, 2010, 29 (5): 512- 517.
doi: 10.4012/dmj.2009-133 |
2 |
Tay FR , Pashley DH , Rueggeberg FA , et al. Calcium phosphate phase transformation produced by the interaction of the portland cement component of white mineral trioxide aggregate with a phosphate-containing fluid[J]. J Endod, 2007, 33 (11): 1347- 1351.
doi: 10.1016/j.joen.2007.07.008 |
3 | 黄贤圣, 李蓉, 冯云枝, 等. 生物活性玻璃NovaMin诱导脱矿牙本质再矿化[J]. 中南大学学报(医学版), 2018, 43 (6): 619- 624. |
4 |
Zhang Y , Wang Z , Jiang T , et al. Biomimetic regulation of dentine remineralization by amino acid in vitro[J]. Dent Mater, 2019, 35 (2): 298- 309.
doi: 10.1016/j.dental.2018.11.026 |
5 |
Sheng XY , Gong WY , Dong YM , et al. Mineral formation on dentin induced by nano-bioactive glass[J]. Chin Chem Lett, 2016, 27 (9): 1509- 1514.
doi: 10.1016/j.cclet.2016.03.030 |
6 |
Mneimne M , Hill RG , Brauer DS , et al. High phosphate content significantly increases apatite formation of fluoride-containing bioactive glasses[J]. Acta Biomater, 2011, 7 (4): 1827- 1834.
doi: 10.1016/j.actbio.2010.11.037 |
7 |
Lynch E , Brauer DS , Karpukhina N , et al. Multi-component bioactive glasses of varying fluoride content for treating dentin hypersensitivity[J]. Dent Mater, 2012, 28 (2): 168- 178.
doi: 10.1016/j.dental.2011.11.021 |
8 |
Shah FA . Fluoride-containing bioactive glasses: Glass design, structure, bioactivity, cellular interactions, and recent developments[J]. Mater Sci Eng C Mater Biol, 2016, 58, 1279- 1289.
doi: 10.1016/j.msec.2015.08.064 |
9 |
Li A , Qiu D . Phytic acid derived bioactive CaO-P2O5-SiO2 gel-glasses[J]. J Mater Sci Mater Med, 2011, 22 (12): 2685- 2691.
doi: 10.1007/s10856-011-4464-7 |
10 |
Chen X , Chen X , Pedone A , et al. New insight into mixing fluo-ride and chloride in bioactive silicate glasses[J]. Sci Rep, 2018, 8 (1): 1316.
doi: 10.1038/s41598-018-19544-2 |
11 |
Hench LL . The story of bioglass?[J]. J Mater Sci Mater Med, 2006, 17 (11): 967- 978.
doi: 10.1007/s10856-006-0432-z |
12 |
Pires PM , Santos TP , Fonseca GA , et al. A dual energy micro-CT methodology for visualization and quantification of biofilm formation and dentin demineralization[J]. Arch Oral Biol, 2018, 85, 10- 15.
doi: 10.1016/j.archoralbio.2017.09.034 |
13 |
Neves AD , Coutinho E , Cardoso MV , et al. Micro-CT based quantitative evaluation of caries excavation[J]. Dent Mater, 2010, 26 (6): 579- 588.
doi: 10.1016/j.dental.2010.01.012 |
14 |
Lo EC , Zhi QH , Itthagarun A . Comparing two quantitative me-thods for studying remineralization of artificial caries[J]. J Dent, 2010, 38 (4): 352- 359.
doi: 10.1016/j.jdent.2010.01.001 |
15 | Olejniczak AJ , Grine FE . Assessment of the accuracy of dental enamel thickness measurements using microfocal X-ray tomography[J]. Anat Rec A Discov Mol Cell Evol Biol, 2006, 288 (3): 263- 275. |
16 |
Pires PM , Santos TP , Fonseca-Gonalves A , et al. Mineral density in carious dentine after treatment with calcium silicates and polyacrylic acid based cements[J]. Int Endod J, 2018, 51 (11): 1292- 1300.
doi: 10.1111/iej.12941 |
17 | Carvalho RN , Letieri ADS , Vieira TI , et al. Accuracy of visual and image-based ICDAS criteria compared with a micro-CT gold standard for caries detection on occlusal surfaces[J]. Braz Oral Res, 2018, 32, e60. |
18 | Jones JR . Reprint of: Review of bioactive glass: From Hench to hybrids[J]. Acta Biomater, 2015, (Suppl 23): 53- 82. |
19 |
Cui CY , Wang SN , Ren HH , et al. Regeneration of dental-pulp complex-like tissue using phytic acid derived bioactive glasses[J]. RSC Adv, 2017, 7 (36): 22063- 22070.
doi: 10.1039/C7RA01480E |
20 | Ren HH , Tian Y , Li AL , et al. The influence of phosphorus precursor on the structure and properties of SiO2-P2O5-CaO bioactive glass[J]. Biomed Phys Engi Express, 2017, 3 (4): 1- 8. |
21 | Li A , Wang D , Xiang J , et al. Insights into new calcium phosphosilicate xerogels using an advanced characterization methodology[J]. J Non Cryst Solids, 2011, 357 (19/20): 3548- 3555. |
[1] | 黄丽东,宫玮玉,董艳梅. 生物活性玻璃对人脐静脉血管内皮细胞增殖及成血管的作用[J]. 北京大学学报(医学版), 2021, 53(2): 371-377. |
[2] | 李秋菊,宫玮玉,董艳梅. 生物活性玻璃预处理对牙本质粘接界面耐久性的影响[J]. 北京大学学报(医学版), 2020, 52(5): 931-937. |
[3] | 龙赟子,刘思毅,李稳,董艳梅. 生物活性玻璃盖髓剂的理化性质[J]. 北京大学学报(医学版), 2018, 50(5): 887-891. |
[4] | 朱林,王聿栋,董艳梅,陈晓峰. 缓释米诺环素的介孔纳米生物玻璃载药系统[J]. 北京大学学报(医学版), 2018, 50(2): 249-255. |
[5] | 宫玮玉,刘绍清,董艳梅,高学军,陈晓峰. 纳米生物活性玻璃促进兔颅骨临界骨缺损修复[J]. 北京大学学报(医学版), 2018, 50(1): 42-48. |
[6] | 李皓,刘玉华,罗志强. 生物活性玻璃用于缓解活髓牙全冠预备后敏感的效果评价[J]. 北京大学学报(医学版), 2017, 49(4): 709-713. |
[7] | 信义,王赛楠,崔彩云,董艳梅. 生物活性玻璃和牙本质浸提蛋白对人牙髓细胞的作用[J]. 北京大学学报(医学版), 2017, 49(2): 331-336. |
[8] | 刘意,王赛楠,崔彩云,董艳梅. 精氨酸-甘氨酸-天冬氨酸-丝氨酸序列在生物活性玻璃对人牙髓细胞生物作用中的影响[J]. 北京大学学报(医学版), 2017, 49(2): 326-330. |
[9] | 胡佳,邹晓英,庄姮,高学军. 根管封闭剂对牙周膜细胞生物相容性的影响[J]. 北京大学学报(医学版), 2016, 48(5): 871-877. |
[10] | 乔迪, 董艳梅, 高学军. 体外评价新型根尖倒充填材料iRoot的生物学性能[J]. 北京大学学报(医学版), 2016, 48(2): 324-329. |
[11] | 魏蔷薇, 董艳梅, 陈晓峰, 李玉莉, 苗国厚. 人牙髓细胞在3种生物活性支架上的生长能力[J]. 北京大学学报(医学版), 2013, 45(03): 484-488. |
[12] | 刘中宁, 姜婷, 王衣祥. 富血小板血浆促进人牙髓细胞的体内矿化潜能[J]. 北京大学学报(医学版), 2011, 43(2): 276-279. |
|