Journal of Peking University (Health Sciences) ›› 2020, Vol. 52 ›› Issue (5): 821-827. doi: 10.19723/j.issn.1671-167X.2020.05.005

Previous Articles     Next Articles

Influence of oxidative/antioxidative biomarkers and inflammatory cytokines on rats after sub-acute orally administration of titanium dioxide nanoparticles

Di ZHOU,Zhang-jian CHEN,Gui-ping HU,Teng-long YAN,Chang-mao LONG,Hui-min FENG,Guang JIA()   

  1. Department of Occupational and Environmental Health Sciences, Peking University School of Public Health, Beijing 100191, China
  • Received:2018-09-08 Online:2020-10-18 Published:2020-10-15
  • Contact: Guang JIA E-mail:jiaguangjia@bjmu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFC1600204);National Natural Science Foundation of China(81703257);Excellent Doctoral Training Program of Peking University(BMU20160564)

RICH HTML

  

Abstract:

Objective: To evaluate the sub-acute oral effect of titanium dioxide (TiO2) nanoparticles on the oxidation/antioxidation biomarkers and inflammatory cytokines in blood, liver, intestine, and colon in rats. Methods: Twenty four 4-week-old clean-grade Sprague Dawley (SD) rats were randomly devided into 4 groups by body weight (n=6, control, low, middle, and high), in which the rats were orally exposed to TiO2 nanoparticles at doses of 0, 2, 10 and 50 mg/kg body weight/day for 28 consecutive days separately. Food intake, body weight and abnormal behaviors during the experiment were recorded. The rats were euthanized on the 29th day. The blood was collected via abdominal aortic method and centrifuged to collect the serum. Tissues from liver, intestine and colon were collected and homogenated. Then enzyme-linked immunosorbent assay (ELISA) and microwell plate methods were used to detect oxidation/antioxidation biomarkers including superoxide dismutase (SOD), glutathione (GSH), glutathione peroxidase (GSH-Px), total mercapto (T-SH), glutathione disulfide (GSSG), malomdialdehvde (MDA) and inflammatory cytokines including interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α) in the serum, liver, intestine and colon in the rats. Results: Compared with the control group, no significant differences in body weight, food intake and organ coefficients were observed in all the three groups after TiO2 gavage. No significant changes in GSH, GSH-Px, T-SH, and IL-6 were observed. Compared with the control group, significant increase of SOD activity in serum in high dose group, signi-ficant increase of GSSG concentration in intestine in middle and high dose group and significant increase of MDA concentration in liver in low and high dose group were observed. Compared with the control group, a significant increase of TNF-α in liver in middle and high dose group was observed. Conclusion: TiO2 nanoparticle can increase antioxidant enzymes activities in blood, increase oxidative biomarkers in liver and intestine, increase inflammatory cytokines in liver in rats after a 28-day sub-acute orally administration. Among blood, liver, intestine, and colon, liver is most sensitive to the toxicity induced by TiO2 nanoparticles, followed by intestine, blood, and colon in sequence.

Key words: Titanium dioxide, Nanoparticles, Antioxidants, Rats, Sprague-Dawley

CLC Number: 

  • R155.3

Figure 1

Characteristics of the TiO2 nanoparticles A, transmission electron micrographs of TiO2 nanoparticles; B, Feret diameter distribution of TiO2 nanoparticles; C, energy dispersive X-ray spectroscopy (EDS) analysis of elements in TiO2 nanoparticles; D, X-ray powder diffractometer (XRD) spectrogram of TiO2 nanoparticles. Symbols of chemical elements: Ti, titanium; O, oxygen; C, carbon; a.u., arbitrary unit."

Figure 2

Body weight changes in different dose groups (x-±s)"

Figure 3

Average daily food intake in different dose groups (x-±s)"

Table 1

Organ weights coefficients of rats in different dose groups mg/g"

Dose group Lung Spleen Heart Liver Kidney (left) Kidney (right) Testicle (left) Testicle (right) Stomach
Control 4.45±0.16 2.38±0.44 4.07±0.45 31.44±1.61 4.17±0.40 4.07±0.33 4.62±0.41 4.62±0.35 5.57±0.52
Low 4.21±0.18 2.55±0.22 3.90±0.34 31.79±1.77 4.20±0.17 4.20±0.39 4.44±0.50 4.50±0.44 5.73±0.46
Middle 4.31±0.14 2.35±0.30 4.26±0.52 31.32±1.91 3.95±0.20 3.92±0.15 4.62±0.37 4.63±0.31 5.57±0.47
High 4.38±0.34 3.36±0.78 3.83±0.33 31.32±2.43 4.02±0.48 3.98±0.39 4.64±0.23 4.69±0.29 5.61±0.52

Table 2

Effects of TiO2 nanoparticles on oxidation/antioxidation biomarkers in multiple tissues (x-±s)"

Organs Dose
group
SOD activity/
(U/mg prot)
GSH concentration/
(μmol/mg prot)
T-SH concentration/
(nmol/mg prot)
GSH-Px activity/
(mU/mg prot)
GSSG
concentration/
(μg/mg prot)
GSH/GSSG MDA
concentration/
(nmol/mg prot)
Serum Control 4.93±0.67 0.04±0.08 16.31±16.50 43.96±3.80 0.85±0.30 26.26±44.02 105.29±12.48
Low 5.46±0.98 0.03±0.09 39.93±21.04 46.37±2.65 1.14±1.03 19.11±46.80 104.85±11.33
Middle 5.49±0.54 0.06±0.13 28.05±6.59 35.27±2.35 0.56±0.64 31.70±70.88 106.19±12.22
High 6.39±0.41# 0.01±0.02 30.93±15.14 37.75±8.58 0.85±0.71 5.30±12.99 98.30±22.96
Liver Control 0.11±0.21 20.76±2.85 238.50±26.65 5.83±5.04 21.39±7.62 647.68±207.22 26.91±4.24
Low 0.17±0.26 23.55±3.66 256.30±33.03 0.56±5.97 17.24±7.51 930.27±287.26 36.95±5.90*
Middle 0.09±0.13 19.86±2.63 201.95±12.85 3.43±6.34 16.76±5.09 760.92±166.55 29.21±6.71
High 0.48±0.39 20.81±2.41 220.02±33.59 4.81±4.57 17.02±3.68 774.08±147.36 38.39±5.18*
Intestine Control 1.44±0.33 9.82±5.89 36.03±19.73 8.40±6.66 11.06±2.82 515.36±163.14 43.79±4.46
Low 1.73±0.84 14.93±10.55 48.93±22.81 6.43±12.56 15.49±6.16 577.13±327.83 40.30±5.76
Middle 1.33±0.53 18.16±9.31 52.53±19.20 4.00±11.21 20.66±4.35* 518.63±212.59 35.11±5.93
High 1.54±0.44 14.02±7.06 52.21±21.23 10.37±14.18 17.16±3.19* 481.50±172.02 41.23±6.85
Colon Control 2.49±0.54 15.80±10.67 33.12±11.23 11.39±10.20 13.50±6.96 416.51±286.73 41.73±7.35
Low 2.64±0.51 13.94±4.36 22.07±17.25 21.44±7.07 18.79±8.88 395.07±170.72 50.98±6.47
Middle 2.15±0.31 15.85±1.14 9.83±11.10 16.79±9.37 19.11±4.12 528.24±124.51 44.21±6.04
High 2.29±0.20 15.14±3.11 24.90±19.19 13.66±6.95 16.61±4.85 550.59±157.70 54.55±8.76

Table 3

Effects of TiO2 nanoparticles on inflammatory cytokine in multiple tissues (x-±s)"

Organs Dose group IL-6 concentration/
(pg/mg prot)
TNF-α concentration/
(pg/mg prot)
Serum Control 0.14±0.30 12.20±7.60
Low 0.13±0.31 8.37±5.39
Middle 0.51±0.79 7.97±3.95
High 0.00±0.00 13.80±7.57
Liver Control 413.46±73.80 296.50±86.11
Low 438.00±95.87 747.11±326.80
Middle 420.42±66.59 599.45±64.11#
High 448.55±27.43 608.23±129.06#
Intestine Control 6.34±15.53 10.77±26.38
Low 12.15±40.51 8.93±21.87
Middle 24.85±43.44 27.13±44.93
High 3.47±31.66 38.63±63.20
Colon Control 22.87±17.74 28.16±29.31
Low 24.87±21.56 36.62±37.72
Middle 39.57±10.24 48.92±14.54
High 26.06±13.83 25.66±21.71
[1] Warheit DB, Donner EM. Risk assessment strategies for nanoscale and fine-sized titanium dioxide particles:Recognizing hazard and exposure issues[J]. Food Chem Toxicol, 2015,85:138-147.
doi: 10.1016/j.fct.2015.07.001 pmid: 26362081
[2] Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environ Sci Technol, 2012,46(4):2242-2250.
doi: 10.1021/es204168d pmid: 22260395
[3] Yang Y, Doudrick K, Bi X, et al. Characterization of food-grade titanium dioxide: the presence of nanosized particles[J]. Environ Sci Technol, 2014,48(11):6391-6400.
doi: 10.1021/es500436x pmid: 24754874
[4] Robichaud CO, Uyar AE, Darby MR, et al. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment[J]. Environ Sci Technol, 2009,43(12):4227-4233.
doi: 10.1021/es8032549 pmid: 19603627
[5] Rompelberg C, Heringa MB, van Donkersgoed GC, et al. Oral intake of added titanium dioxide and its nanofraction from food products, food supplements and toothpaste by the Dutch population[J]. Nanotoxicology, 2016,10(10):1404-1414.
doi: 10.1080/17435390.2016.1222457 pmid: 27619007
[6] Scherbart AM, Langer J, Bushmelev A, et al. Contrasting macrophage activation by fine and ultrafine titanium dioxide particles is associated with different uptake mechanisms[J]. Part Fibre Toxicol, 2011,8(31):1-19.
doi: 10.1186/1743-8977-8-1
[7] Katsumiti A, Berhanu D, Howard KT, et al. Cytotoxicity of TiO2 nanoparticles to mussel hemocytes and gill cells in vitro: influence of synjournal method, crystalline structure, size and additive[J]. Nanotoxicology, 2015,9(5):543-553.
doi: 10.3109/17435390.2014.952362 pmid: 25188678
[8] Takaki K, Higuchi Y, Hashii M, et al. Induction of apoptosis associated with chromosomal DNA fragmentation and caspase-3 activation in leukemia L1210 cells by TiO2 nanoparticles[J]. J Biosci Bioeng, 2014,117(1):129-133.
doi: 10.1016/j.jbiosc.2013.06.003
[9] Zhang Z, Liang ZC, Zhang JH, et al. Nano-sized TiO2 (nTiO2) induces metabolic perturbations in Physarum polycephalum macroplasmodium to counter oxidative stress under dark conditions[J]. Ecotoxicol Environ Saf, 2018,154:108-117.
doi: 10.1016/j.ecoenv.2018.02.012 pmid: 29454986
[10] Ammendolia MG, Iosi F, Maranghi F, et al. Short-term oral exposure to low doses of nano-sized TiO2 and potential modulatory effects on intestinal cells[J]. Food Chem Toxicol, 2017,102:63-75.
doi: 10.1016/j.fct.2017.01.031 pmid: 28159593
[11] Bachler G, von Goetz N, Hungerbuhler K. Using physiologically based pharmacokinetic (PBPK) modeling for dietary risk assessment of titanium dioxide (TiO2) nanoparticles[J]. Nanotoxicology, 2015,9(3):373-380.
doi: 10.3109/17435390.2014.940404 pmid: 25058655
[12] Huybrechts I, Sioena I, Boon PE, et al. Long-term dietary exposure to different food colours in young children living in different European countries[J]. EFSA Support Publ, 2010,7(5):53E.
[13] Cui YL, Gong XL, Duan YM, et al. Hepatocyte apoptosis and its molecular mechanisms in mice caused by titanium dioxide nanoparticles[J]. J Hazard Mater, 2010,183(1-3):874-880.
doi: 10.1016/j.jhazmat.2010.07.109 pmid: 20724067
[14] He J, Wang T, Wang P, et al. A novel mechanism underlying the susceptibility of neuronal cells to nitric oxide: the occurrence and regulation of protein S-nitrosylation is the checkpoint[J]. J Neurochem, 2007,102(6):1863-1874.
doi: 10.1111/j.1471-4159.2007.04651.x pmid: 17767703
[15] Lugrin J, Rosenblatt VN, Parapanov R, et al. The role of oxidative stress during inflammatory processes[J]. Biol Chem, 2014,395(2):203-230.
doi: 10.1515/hsz-2013-0241 pmid: 24127541
[16] Lei XG, Zhu JH, Cheng WH, et al. Paradoxical roles of antioxidant enzymes: basic mechanisms and health implications[J]. Physiol Rev, 2016,96(1):307-364.
doi: 10.1152/physrev.00010.2014 pmid: 26681794
[17] Huang XZ, Lan YW, Liu ZK, et al. Salinity mediates the toxic effect of nano-TiO2 on the juvenile olive flounder Paralichthys olivaceus [J]. Sci Total Environ, 2018, 640-641:726-735.
doi: 10.1016/j.scitotenv.2018.05.350 pmid: 29879661
[18] Sentellas S, Morales IO, Zanuy M, et al. GSSG/GSH ratios in cryopreserved rat and human hepatocytes as a biomarker for drug induced oxidative stress[J]. Toxicol Vitr, 2014,28(5):1006-1015.
doi: 10.1016/j.tiv.2014.04.017
[19] Hu HL, Guo Q, Wang CL, et al. Titanium dioxide nanoparticles increase plasma glucose via reactive oxygen species-induced insulin resistance in mice[J]. J Appl Toxicol, 2015,35(10):1122-1132.
doi: 10.1002/jat.3150 pmid: 25826740
[20] Shukla RK, Kumar A, Vallabani NVS, et al. Titanium dioxide nanoparticle-induced oxidative stress triggers DNA damage and hepatic injury in mice[J]. Nanomedicine, 2014,9(9):1423-1434.
doi: 10.2217/NNM.13.100
[21] Gornati R, Longo A, Rossi F, et al. Effects of titanium dioxide nanoparticle exposure in Mytilus galloprovincialis gills and digestive gland[J]. Nanotoxicology, 2016,10(6):807-817.
doi: 10.3109/17435390.2015.1132348 pmid: 26846715
[22] Chen ZJ, Wang Y, Zhuo L, et al. Effect of titanium dioxide nanoparticles on the cardiovascular system after oral administration[J]. Toxicol Lett, 2015,239(2):123-130.
doi: 10.1016/j.toxlet.2015.09.013 pmid: 26387441
[23] Sycheva LP, Zhurkov VS, Iurchenko VV, et al. Investigation of genotoxic and cytotoxic effects of micro- and nanosized titanium dioxide in six organs of mice in vivo[J]. Mutat Res, 2011,726(1):8-14.
doi: 10.1016/j.mrgentox.2011.07.010 pmid: 21871579
[1] Zhan-yi ZHANG,Fan ZHANG,Ye YAN,Cai-guang CAO,Chang-jian LI,Shao-hui DENG,Yue-hao SUN,Tian-liang HUANG,Yun-he GUAN,Nan LI,Min LU,Zhen-hua HU,Shu-dong ZHANG. Near-infrared targeted probe designed for intraoperative imaging of prostatic neurovascular bundles [J]. Journal of Peking University (Health Sciences), 2023, 55(5): 843-850.
[2] Jia-qi SHI,Ying MA,Yi ZHANG,Zhang-jian CHEN,Guang JIA. Effects of titanium dioxide nanoparticles on circRNA expression profiles in human hepatocellular carcinoma cells HepG2 [J]. Journal of Peking University (Health Sciences), 2023, 55(3): 392-399.
[3] Ling-wei MENG,Xue LI,Sheng-han GAO,Yue LI,Rui-tao CAO,Yi ZHANG,Shao-xia PAN. Comparison of three methods for establishing rat peri-implantitis model [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 22-29.
[4] Jia-he ZHANG,Jia-qi SHI,Zhang-jian CHEN,Guang JIA. Effects of nano titanium dioxide on gut microbiota based on human digestive tract microecology simulation system in vitro [J]. Journal of Peking University (Health Sciences), 2022, 54(3): 468-476.
[5] HE Wei,YANG Si-wen,CHEN Juan,ZHU Xiao-jun,CHEN Zhi-zhong,MA Wen-jun. Effects of 275 nm and 310 nm ultraviolet irradiation on bone metabolism in ovariectomized osteoporotic rats [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 236-243.
[6] WANG Gui-hong,ZUO Ting,LI Ran,ZUO Zheng-cai. Effect of rebamipide on the acute gouty arthritis in rats induced by monosodium urate crystals [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 716-720.
[7] YIN Xue-qian, ZHANG Xiao-xuan, WEN Jing, LIU Si-qi, LIU Xin-ran, ZHOU Ruo-yu, WANG Jun-bo. Effects of the composite of buckwheat-oat-pea on blood glucose in diabetic rats [J]. Journal of Peking University (Health Sciences), 2021, 53(3): 447-452.
[8] Zhang-jian CHEN,Shuo HAN,Pai ZHENG,Shu-pei ZHOU,Guang JIA. Effect of subchronic combined oral exposure of titanium dioxide nanoparticles and glucose on levels of serum folate and vitamin B12 in young SD rats [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 451-456.
[9] Shuo HAN,Zhang-jian CHEN,Di ZHOU,Pai ZHENG,Jia-he ZHANG,Guang JIA. Effects of titanium dioxide nanoparticles on fecal metabolome in rats after oral administration for 90 days [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 457-463.
[10] Shan-shan BAI,Si-yi MO,Xiao-xiang XU,Yun LIU,Qiu-fei XIE,Ye CAO. Characteristics of orofacial operant test for orofacial pain sensitivity caused by occlusal interference in rats [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 51-57.
[11] Jiao HE,Ge-heng YUAN,Jun-qing ZHANG,Xiao-hui GUO. Approach to creating early diabetic peripheral neuropathy rat model [J]. Journal of Peking University(Health Sciences), 2019, 51(6): 1150-1154.
[12] Wei WANG,Jin HOU,Wen-qiang HUANG. Temporary acceleration of interstitial fluid drainage in excited brain region induced by movement [J]. Journal of Peking University(Health Sciences), 2019, 51(2): 206-209.
[13] DUAN Shu-min, ZHANG Yong-liang, WANG Yun. Effects of titanium dioxide nanoparticles and lipopolysaccharide on antioxidant function of liver tissues in mice [J]. Journal of Peking University(Health Sciences), 2018, 50(3): 395-400.
[14] WANG Huan, QIN Xiao-ya, LI Zi-yuan, ZHENG Zhuo-zhao, FAN Tian-yuan. Preparation and characterization of citric acid-modified superparamagnetic iron oxide nanoparticles [J]. Journal of Peking University(Health Sciences), 2018, 50(2): 340-346.
[15] ZHANG Yong-liang, CHEN Zhang-jian, CHEN Shi, ZHUO lin, JIA Guang, WANG Yun. Effect of nano-TiO2 on intestinal glucose absorption in young rat on the everted gut sac model [J]. Journal of Peking University(Health Sciences), 2017, 49(3): 376-382.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!