Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (1): 33-41. doi: 10.3969/j.issn.1671-167X.2018.01.006

• Article • Previous Articles     Next Articles

Decreased phosphorylation of mitogen activated protein kinase and protein kinase B contribute to the inhibition of osteogenic differentiation mediated by activation of Toll like receptor in human periodontal ligament stem cells#br#

ZHU Yun-yan, LI Qian, ZHANG Yi-mei, ZHOU Yan-heng△   

  1. (Department of Orthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: ZHOU Yan-heng E-mail:yanhengzhou@vip.163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China ( 81470717, 81300897) and Science Foundation for Youth Scholars of Peking University of Stomatology (YS020216)

Abstract: Objective: To investigate the effects of Toll like receptors on the osteogenesis of human pe-riodontal ligament stem cells (hPDLSCs) and probable molecular mechanism. Methods: Real-time PCR and flow cytometry were applied to test the expression of TLRs in hPDLSCs and the positive cell percentage of TLR. hPDLSCs were cultured in osteogenic medium for 7 to 14 days with different TLR agonists at various concentrations . The effect of different TLR on osteogenic differentiation of hPDLSCs was evaluated by alizarin red S staining, alkaline phosphatase (ALP) staining and ALP activity assay. Western blotting was used to analyze the phosphorylation levels of extracellular regulated protein kinases (ERK), c-Jun N-terminal protein kinase (JNK), P38, AKT and expression of Runx2 an osteogenic related gene after treatment with TLR agonists, compared with the effect of inhibitors of mitogen activated protein kinase (MAPK) or protein kinase B (PKB or AKT) on Runx2 expression of hPDLSCs cultured in osteogenic medium. Results: Higher expressions of TLR1,3,4,6 were found in hPDLSCs through real-time PCR. Positive cell percentage of TLR was determined by flow cytometry and described as TLR1: 2.82%±0.68%; TLR2: 1.26%±0.09%; TLR3: 13.23%±2.05%; TLR4: 3.64%±0.79%; TLR6: 3.21%±1.64%, whose tendency was comparable to their mRNA expression in hPDLSCs. Most TLR ligands had no effect on the ALP staining, activity and mineralization of hPDLSCs at lower concentration except for 0.1 mg/L PolyI:C could induce the osteogenic ability of hPDLSCs. On the contrary, Higher concentration of TLR ligands (PolyI:C: 10 mg/L, LPS: 10 mg/L , Pam3CSK4: 1 mg/L, FSL-1: 50 μg/L) had obviously inhibitory effect on osteogenic differentiation of hPDLSCs. Activation of TLR using higher concentration of TLR ligands could downregulate the phosphorylation levels of ERK, P38, JNK and AKT, and also reduced the expression of Runx2, compared with the untreated control. The inhibitors of MAPK (U0126, SP600125,SB203580) and inhibitor of AKT (perifosine) could also inhibit Runx2 expression. Conclusion: Higher concentration of TLR ligands could inhibit osteogenic differentiation of hPDLSCs. This inhibitory effect seemed to be related to decreased phosphorylation of MAPK and AKT.

Key words: Toll like receptor, Human periodontal ligament stem cell (hPDLSCs), Osteogenic dif-ferentiation, Mitogen activated protein kinase (MAPK), Protein kinase B

CLC Number: 

  • R781.4
[1] Yuru HU,Juan LIU,Wenjing LI,Yibing ZHAO,Qiqiang LI,Ruifang LU,Huanxin MENG. Relationship between short-chain fatty acids in the gingival crevicular fluid and periodontitis of stage Ⅲ or Ⅳ [J]. Journal of Peking University (Health Sciences), 2024, 56(2): 332-337.
[2] Jiayun DONG,Xuefen LI,Ruifang LU,Wenjie HU,Huanxin MENG. Histopathological characteristics of peri-implant soft tissue in reconstructed jaws with vascularized bone flaps [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 25-31.
[3] Han ZHANG,Yixuan QIN,Diyuan WEI,Jie HAN. A preliminary study on compliance of supportive treatment of patients with periodontitis after implant restoration therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 39-44.
[4] Chang SHU,Ye HAN,Yuzhe SUN,Zaimu YANG,Jianxia HOU. Changes of parameters associated with anemia of inflammation in patients with stage Ⅲ periodontitis before and after periodontal initial therapy [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 45-50.
[5] Xi-yan PEI,Wen YANG,Xiang-ying OUYANG,Feng SUN. Comparison of clinical effects between periodontal endoscopy aiding subgingival debridement and flap surgery [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 716-720.
[6] Ling-wei MENG,Xue LI,Sheng-han GAO,Yue LI,Rui-tao CAO,Yi ZHANG,Shao-xia PAN. Comparison of three methods for establishing rat peri-implantitis model [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 22-29.
[7] Fei SUN,Jian LIU,Si-qi LI,Yi-ping WEI,Wen-jie HU,Cui WANG. Profiles and differences of submucosal microbial in peri-implantitis and health implants: A cross-sectional study [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 30-37.
[8] Jing WEN,Xiang-ying OUYANG,Xi-yan PEI,Shan-yong QIU,Jian-ru LIU,Wen-yi LIU,Cai-fang CAO. Multivariable analysis of tooth loss in subjects with severe periodontitis over 4-year natural progression [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 70-77.
[9] Fei SUN,Si-qi LI,Yi-ping WEI,Jin-sheng ZHONG,Cui WANG,Wen-jie HU. Efficacy of combined application of glycine powder air-polishing in non-surgical treatment of peri-implant diseases [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 119-125.
[10] ZHU Xiao-ling,LI Wen-jing,WANG Xian-e,SONG Wen-li,XU Li,ZHANG Li,FENG Xiang-hui,LU Rui-fang,SHI Dong,MENG Huan-xin. Gene polymorphisms of cytochrome B-245 alpha chain (CYBA) and cholesteryl ester transfer protein (CETP) and susceptibility to generalized aggressive periodontitis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 18-22.
[11] YUAN Lin-tian,MA Li-sha,LIU Run-yuan,QI wei,ZHANG Lu-dan,WANG Gui-yan,WANG Yu-guang. Computer simulation of molecular docking between methylene blue and some proteins of Porphyromonas gingivalis [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 23-30.
[12] XU Xin-ran,HUO Peng-cheng,HE Lu,MENG Huan-xin,ZHU Yun-xuan,JIN Dong-si-qi. Comparison of initial periodontal therapy and its correlation with white blood cell level in periodontitis patients with or without diabetes mellitus [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 48-53.
[13] GAO Hong-yu,MENG Huan-xin,HOU Jian-xia,HUANG Bao-xin,LI Wei. Expression and distribution of calprotectin in healthy and inflamed periodontal tissues [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 744-749.
[14] LI Zheng,WANG Xiao,HONG Tian-pei,WANG Hao-jie,GAO Zhan-yi,WAN Meng. Mechanism of advanced glycation end products inhibiting the proliferation of peripheral blood mononuclear cells and osteoblasts in rats [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 355-363.
[15] ZHANG Sheng-nan,AN Na,OUYANG Xiang-ying,LIU Ying-jun,WANG Xue-kui. Role of growth arrest-specific protein 6 in migration and osteogenic differentiation of human periodontal ligament cells [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!