Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (1): 131-135. doi: 10.3969/j.issn.1671-167X.2018.01.022

• Article • Previous Articles     Next Articles

Simulation of dose distribution in bone medium of 125I photon emitting source with Monte Carlo method

YE Ke-qiang1, HUANG Ming-wei1△, LI Jun-li2, TANG Jin-tian2, ZHANG Jian-guo1   

  1. (1. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China; 2. Department of Engineering Physics, Tsinghua University, Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Key Laboratory of High Energy Radiation Imaging Fundamental Science,Beijing 100084, China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: HUANG Ming-wei E-mail:hmwd97@126.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (81502652)

Abstract: Objective: To present a theoretical analysis of how the presence of bone in interstitial brachytherapy affects dose rate distributions with MCNP4C Monte Carlo code and to prepare for the next clinical study on the dose distribution of interstitial brachytherapy in head and neck neoplasm. Methods: Type 6711,125I brachytherapy source was simulated with MCNP4C Monte Carlo code whose cross section library was DLC-200. The dose distribution along the transverse axis in water and dose constant were compared with the American Association of Physicists in Medicine (AAPM) TG43UI update dosimetry formalism and current literature. The validated computer code was then applied to simple homogeneous bone tissue model to determine the affected different bone tissue had on dose distribution from 125I interstitial implant. Results: 125I brachytherapy source simulated with MCNP4C Monte Carlo code met the requirements of TG43UI report. Dose rate constant, 0.977 78 cGy/(h·U), was in agreement within 1.32% compared with the recommended value of TG43UI. There was a good agreement between TG43UI about the dosimetric parameters at distances of 1 to 10 cm along the transverse axis of the 125I source established by MCNP4C and current published data. And the dose distribution of 125I photon emitting source in different bone tissue was calculated. Dose-deposition capacity of photons was in decreasing order: cortical bone, spongy bone, cartilage, yellow bone marrow, red bone marrow in the same medium depth. Photons deposited significantly in traversal axis among the phantom material of cortical bone and sponge bone relevant to the dose to water. In the medium depth of 0.01 cm, 0.1 cm, and 1 cm, the dose in the cortical bone was 12.90 times, 9.72 times, and 0.30 times of water respectively. Conclusion: This study build a 125I source model with MCNP4C Monte Carlo code, which is validated, and could be used in subsequent study. Dose distribution of photons in different bone medium is not the same as water, and its main energy deposits in bone medium surface, so we should consider the effect of bone medium when we design the target area adjacent to the bone tissue in 125I sources implantation plan.

Key words: Monte Carlo method, Iodine radioisotopes, Bone, Radiation dosage, Brachytherapy

CLC Number: 

  •  
[1] XUE Jiang,ZHANG Jian-yun,SHI Rui-rui,XIE Xiao-yan,BAI Jia-ying,LI Tie-jun. Clinicopathological analysis of 105 patients with fibrous dysplasia of cranio-maxillofacial region [J]. Journal of Peking University (Health Sciences), 2022, 54(1): 54-61.
[2] Hua ZHONG,Li-ling XU,Ming-xin BAI,Yin SU. Effect of chemokines CXCL9 and CXCL10 on bone erosion in patients with rheumatoid arthritis [J]. Journal of Peking University (Health Sciences), 2021, 53(6): 1026-1031.
[3] Feng LIANG,Min-jie WU,Li-dong ZOU. Clinical observation of the curative effect after 5-year follow-up of single tooth implant-supported restorations in the posterior region [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 970-976.
[4] Yu YIN,Yu MEI,Ze-gang WANG,Shou-yi SONG,Peng-fei LIU,Peng-feng HE,Wen-jie WU,Xing XIE. Lengths of the fixed loop and the adjustable loop in the coarse bone tunnel were compared to influence the widening of the femoral bone tunnel and the function of the knee joint [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 883-890.
[5] YOU Peng-yue,LIU Yu-hua,WANG Xin-zhi,WANG Si-wen,TANG Lin. Biocompatibility and effect on bone formation of a native acellular porcine pericardium: Results of in vitro and in vivo [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 776-784.
[6] WANG Si-wen,YOU Peng-yue,LIU Yu-hua,WANG Xin-zhi,TANG Lin,WANG Mei. Efficacy of two barrier membranes and deproteinized bovine bone mineral on bone regeneration in extraction sockets: A microcomputed tomographic study in dogs [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 364-370.
[7] WANG Jing-qi,WANG Xiao. In vivo study of strontium-doped calcium phosphate cement for biological properties [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 378-383.
[8] HAN Wei-hua,LUO Hai-yan,GUO Chuan-bin,NING Qi,MENG Juan-hong. Expression of cartilage oligomeric matrix protein in the synovial chondromatosis of the temporomandibular joint [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 34-39.
[9] Huan-bin YU,Wen-jie WU,Xiao-ming LV,Yan SHI,Lei ZHENG,Jian-guo ZHANG. 125I seed brachytherapy for recurrent salivary gland carcinoma after external radiotherapy [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 919-923.
[10] Mei WANG, Bo-wen LI, Si-wen WANG, Yu-hua LIU. Preparation and osteogenic effect study of small intestinal submucosa sponge [J]. Journal of Peking University (Health Sciences), 2020, 52(5): 952-958.
[11] Wei-yi WU,Bo-wen LI,Yu-hua LIU,Xin-zhi WANG. Biodegradation properties of multi-laminated small intestinal submucosa [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 564-569.
[12] Xiao LI,Jia-zeng SU,Yan-yan ZHANG,Li-qi ZHANG,Ya-qiong ZHANG,Deng-gao LIU,Guang-yan YU. Inflammation grading and sialoendoscopic treatment of131I radioiodine-induced sialadenitis [J]. Journal of Peking University (Health Sciences), 2020, 52(3): 586-590.
[13] Zhong ZHANG,Huan-xin MENG,Jie HAN,Li ZHANG,Dong SHI. Effect of vertical soft tissue thickness on clinical manifestation of peri-implant tissue in patients with periodontitis [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 332-338.
[14] Fei LI,Jing QIAO,Jin-yu DUAN,Yong ZHANG,Xiu-jing WANG. Effect of concentrated growth factors combined with guided tissue regeneration in treatment of classⅡ furcation involvements of mandibular molars [J]. Journal of Peking University (Health Sciences), 2020, 52(2): 346-352.
[15] Wei-ting LI,Peng LI,Mu-zi PIAO,Fang ZHANG,Jie DI. Study on bone volume harvested from the implant sites with different methods [J]. Journal of Peking University(Health Sciences), 2020, 52(1): 103-106.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Journal of Peking University(Health Sciences), 2009, 41(4): 456 -458 .
[2] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 125 -128 .
[3] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 135 -140 .
[4] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 158 -161 .
[5] . [J]. Journal of Peking University(Health Sciences), 2009, 41(2): 217 -220 .
[6] . [J]. Journal of Peking University(Health Sciences), 2009, 41(1): 52 -55 .
[7] . [J]. Journal of Peking University(Health Sciences), 2009, 41(1): 109 -111 .
[8] . [J]. Journal of Peking University(Health Sciences), 2009, 41(3): 297 -301 .
[9] . [J]. Journal of Peking University(Health Sciences), 2009, 41(5): 599 -601 .
[10] . [J]. Journal of Peking University(Health Sciences), 2009, 41(5): 516 -520 .