Journal of Peking University(Health Sciences) ›› 2018, Vol. 50 ›› Issue (1): 141-147. doi: 10.3969/j.issn.1671-167X.2018.01.024

• Article • Previous Articles     Next Articles

Stress change of periodontal ligament of the anterior teeth at the stage of space closure in lingual appliances: a 3-dimensional finite element analysis

LIU Da-wei1, LI Jing1, GUO Liang2, RONG Qi-guo2, ZHOU Yan-heng1△   

  1. (1. Department of Orthodontics,Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081,China; 2. Department of Biomedical Engineering,College of Engineering,Peking University,Beijing 100871,China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: ZHOU Yan-heng E-mail:yanhengzhou@vip.sina.com
  • Supported by:
    Supported by Young Scientists Fund of PKUSS (PKUSS20110203) and New Clinical Technology Fund of PKUSS (PKUSSNCT-11A07)

Abstract: Objective:To analyze the stress distribution in the periodontal ligament (PDL) under different loading conditions at the stage of space closure by 3D finite element model of customized lingual appliances. Methods: The 3D finite element model was used in ANSYS 11.0 to analyze the stress distribution in the PDL under the following loading conditions: (1) buccal sliding mechanics (0.75 N,1.00 N,1.50 N), (2) palatal sliding mechanics (0.75 N,1.00 N,1.50 N), (3) palatalbuccal combined sliding mechanics (buccal 1.00 N + palatal 0.50 N, buccal 0.75 N + palatal 0.75 N, buccal 0.50 N+ palatal 1.00 N). The maximum principal stress, minimum principal stress and von Mises stress were evaluated. Results: (1) buccal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress, which was the compressed stress, distributed in labial PDL of cervix of lateral incisor, and palatal distal PDL of cervix of canine. With increasing loa-ding, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in palatal PDL of cervix of lateral incisor and mesial PDL of cervix of canine. With increasing loading, the magnitude and range of minimum principal stress was increased. The area of minimum principal stress appeared in distal and mesial PDL of cervix of central incisor. von Mises stress:it distributed in labial and palatal PDL of cervix of la-teral incisor and distal PDL of cervix of canine initially. With increasing loading, the magnitude and range of stress was increased towards the direction of root. Finally, there was stress concentration area at mesial PDL of cervix of canine. (2) palatal sliding mechanics(0.75 N,1.00 N,1.50 N): maximum principal stress: at the initial of loading, maximum principal stress which was the compressed stress, distributed in palatal and distal PDL of cervix of canine, and distalbuccal and palatal PDL of cervix of late-ral incisor. With increasing loading, the magnitude and range of the stress was increased. Minimum principal stress: at the initial of loading, minimum principal stress which was tonsil stress, distributed in distalinterproximal PDL of cervix of lateral incisor and mesial-interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of the stress was increased.von Mises stress: von Mises stress distributed in palatal and interproximal PDL of cervix of canine. With increasing loading, the magnitude and range of stress was increased. Finally, von Mises stress distributing area appeared at distalpalatal PDL of cervix of canine. (3) palatalbuccal combined sliding mechanics: maximum principal stress: maximum principal stress still distributed in distal-palatal PDL of cervix of canine. Minimum principal stress: minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force increased, the stress concentrating area transferred to mesial PDL of cervix of canine.von Mises stress: it was lower and more well-distributed in palatal-buccal combined sliding mechanics than palatal or buccal sliding mechanics. Conclusion: Using buccal sliding mechanics,stress majorly distributed in PDL of lateral incisor and canine, and magnitude and range of stress increased with the increase of loading; Using palatal sliding mechanics,stress majorly distributed in PDL of canine, and magnitude and range of stress increased with the increase of loading; With palatal-buccal combined sliding mechanics, the maximum principal stress distributed in the distal PDL of canine. Minimum principal stress distributed in palatal PDL of cervix of lateral incisor when buccal force was more than palatal force. As palatal force was increasing, the minimum principal stress distributing area shifted to mesial PDL of cervix of canine. When using 1.00 N buccal force and 0.50 N palatal force, the von Mises stress distributed uniformly in PDL and minimal stress appeared.

Key words: Lingual orthodontics, Stress of periodontal ligament, 3 Dimensional finite element analysis

CLC Number: 

  • R783.5
[1] Liang LYU,Mingjin ZHANG,Aonan WEN,Yijiao ZHAO,Yong WANG,Jing LI,Gengchen YANG,Dawei LIU. Preliminary evaluation of chin symmetry with three dimentional soft tissue spatial angle wireframe template [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 106-110.
[2] Bochun MAO,Yajing TIAN,Xuedong WANG,Jing LI,Yanheng ZHOU. Soft and hard tissue changes of hyperdivergent class Ⅱ patients before and after orthodontic extraction treatment [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 111-119.
[3] Meng-qiao PAN,Jian LIU,Li XU,Xiao XU,Jian-xia HOU,Xiao-tong LI,Xiao-xia WANG. A long-term evaluation of periodontal phenotypes before and after the periodontal-orthodontic-orthognathic combined treatment of lower anterior teeth in patients with skeletal Angle class Ⅲ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 52-61.
[4] Yu FU,Xin-nong HU,Sheng-jie CUI,Jie SHI. Decompensation effectiveness and alveolar bone remodeling analysis of mandibular anterior teeth after preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 62-69.
[5] 久祥 林,莉莉 陈,冰 韩,斯 陈,燕楠 孙,晓默 刘,杰铌 张. [J]. Journal of Peking University (Health Sciences), 2022, 54(5): 837-841.
[6] Juan GAO,Hang-miao LV,Hui-min MA,Yi-jiao ZHAO,Xiao-tong LI. Evaluation of root resorption after surgical orthodontic treatment of skeletal Class Ⅲ malocclusion by three-dimensional volumetric measurement with cone-beam CT [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 719-726.
[7] LIU Wei-tao,WANG Yi-ran,WANG Xue-dong,ZHOU Yan-heng. A cone-beam computed tomography evaluation of three-dimensional changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 346-355.
[8] LIANG Wei,TANG Yao,HUANG Wen-bin,HAN Bing,LIN Jiu-xiang. Efficacy of vertical control by using mini-implant anchorage in maxillary posterior buccal area for Angle class Ⅱ extraction patients [J]. Journal of Peking University (Health Sciences), 2022, 54(2): 340-345.
[9] YANG Yuhui,HUANG Yiping,LI Weiran. Effect of corticotomy techniques accelerating orthodontic tooth movement on root resorption [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 434-437.
[10] GAO Lu,GU Yan. Chinese morphological stages of midpalatal suture and its correlation with Demirjian dental age [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 133-138.
[11] ZHOU Jing,LIU Yi. Cone-beam CT evaluation of temporomandibular joint in skeletal class Ⅱ female adolescents with different vertical patterns [J]. Journal of Peking University (Health Sciences), 2021, 53(1): 109-119.
[12] Ren-jie DU,Jian JIAO,Yan-heng ZHOU,Jie SHI. Occlusal changes before and after orthodontic treatment in patients with aggressive periodontitis [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 919-924.
[13] Gao-nan WANG,Jian JIAO,Yan-heng ZHOU,Jie SHI. Effect of orthodontic tooth movement on keratinized gingival width [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 931-936.
[14] Min-jung KIM,Yi LIU. Using three-dimensional craniofacial images to construct horizontal reference plane [J]. Journal of Peking University(Health Sciences), 2019, 51(5): 937-943.
[15] Xiu-jing WANG,Yi-mei ZHANG,Yan-heng ZHOU. Orthodontic-orthognathic treatment stability in skeletal class Ⅲ malocclusion patients [J]. Journal of Peking University(Health Sciences), 2019, 51(1): 86-92.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!