北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (5): 968-972. doi: 10.19723/j.issn.1671-167X.2019.05.030

• 技术方法 • 上一篇    下一篇

改良式微推出试验评价化学处理玻璃纤维桩表面后与树脂水门汀的粘接强度

陈倩1,王新知2,()   

  1. 1. 北京大学口腔医学院·口腔医院,第二门诊部 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100101
    2. 北京大学口腔医学院·口腔医院修复科, 北京 100081
  • 收稿日期:2017-09-22 出版日期:2019-10-18 发布日期:2019-10-23
  • 通讯作者: 王新知 E-mail:xinzwang@sina.com.cn

Evaluation of modified micro-push-out bond strength of glass fiber posts with chemically treated resin cements

Qian CHEN1,Xin-zhi WANG2,()   

  1. 1. Second Clinical Division,Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100101, China
    2. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
  • Received:2017-09-22 Online:2019-10-18 Published:2019-10-23
  • Contact: Xin-zhi WANG E-mail:xinzwang@sina.com.cn

RICH HTML

  

摘要:

目的:建立一种改良式微推出方式测试玻璃纤维桩表面经35%磷酸+硅烷偶联剂处理后与树脂水门汀的粘接强度,探讨此种测试模式评价玻璃纤维桩与树脂水门汀粘接强度的价值。方法:先将40支玻璃纤维桩随机分成2大组,每组20支,组1为磷酸+硅烷化组,组2为对照组。再将每一大组随机分为M(改良)和T(传统)两个小组,每组10支,分别用改良式微推出试验和传统微推出试验测定纤维桩与树脂水门汀的粘接强度并观察破坏模式。结果:组1M(磷酸+硅烷化组-改良)微推出粘接强度为(18.85±1.42) MPa,组1T(磷酸+硅烷化组-传统)为(19.39±1.35) MPa,组2M(对照组-改良)为(11.26±1.57)MPa,组2T(对照组-传统)为(11.27±1.83)MPa,在改良组和传统组中,磷酸+硅烷化组粘接强度值均显著高于对照组(P<0.01),且改良组中断裂模式100%为桩/树脂界面破坏,相比传统组的65.7%,更加集中体现界面粘接强度的变化。结论:相较于传统组,改良组微推出试验能更有效地评价纤维桩与树脂水门汀之间的粘接强度,且35%磷酸+硅烷化处理玻璃纤维桩表面可以更有效地提高其与树脂水门汀的粘接强度。

关键词: 改良式, 微推出试验, 玻璃纤维桩, 磷酸, 硅烷化

Abstract:

Objective: To evaluate the modified micro-push-out bond strengths of prefabricated glass fiber posts with silaneafter 35% phosphoric acid to resin cements. Methods: In the study, 40 glass fiber posts were randomly divided into 2 groups (20 posts in each group) for different surface treatments. Group 1, treated with silaneafter 35% phosphoric acid;group 2, no surface treatment (Control group). Then each group was randomly divided into 2 minor groups (modified group and traditional group), with each group with 10. So the four groups were group 1M (phosphoric acid + silane-modified), group 1T (phosphoric acid + silane-traditional), group 2M (control-modified), and group 2T (control-traditional). A modified micro-push-out bond strength test method was used in modified groups. In traditional groups, the 20 extracted human, single-rooted teeth were endodontically treated. Gutta-percha was removed with #1-2 Peeso Reamers (Mani), and the post space of each specimen was enlarged with a standard drill system from the corresponding fiber post system to create a 9 mm post space with at least 4 mm of filling material in the root apex. Following post cementation according to the manufacturer’s instructions, the traditional micro-push-out bond strengths were tested using a universal testing machine(0.5 mm/min). Both failure modes were examined with a stereomicroscope. The data of the four groups were statistically analyzed using the one-way ANOVA test(α= 0.05). Results: The bond strengths were (18.85±1.42) MPa for group 1M, (19.39±1.35) MPa for group 1T, (11.26±1.57) MPa for group 2M, and (11.27±1.83) MPa for group 2T. The bond strength of Group 1 was significantly higher than that of group 2(P<0.05), no matter which method was used. The fracture mode 100% in group M was the destruction of the post/resin interface, compared with 65.7% in group T. Conclusion: In contrasted to the traditional micro-push-out test, the modified test can evaluate the bond strength of fiber post to resin cement more effectively, and 35% phosphate acid + silane treatment can improve the bonding strength.

Key words: Modified, Micro-push-out, Glass fiber posts, Phosphate acid, Silane

中图分类号: 

  • R783.1

表1

35%磷酸+硅烷化组、对照组的纤维桩表面处理"

Group (post n=40) Surface treatment
Group 1, 30% phosphoric
acid+silane (n=20)
The posts surface was ultrasonically cleaned in ethanol before use (50 Hz, 0.5 h) for 30 seconds followed by air drying, immersion in 35% phosphoric acid. A silane coupling agent (Prosil; FGM) was applied with a microbrush and left to dry 60 seconds according to the manufacturer’s instruction
Group 2, control (n=20) The posts surface was ultrasonically cleaned in ethanol before use (50 Hz, 0.5 h) for 30 seconds, dried

表2

改良式微推出组、传统微推出组的纤维桩粘接"

Tests Specific steps of fiber post cemented
Modified micro-push-out 1. Mix base past and catalyst paste into a homogenous paste within 20 seconds using a spatula according to the
manufacturer’s instructions. Avoid incorporating air bubbles. Apply the mixed cement evenly to the mold, a
Teflon post (special design RTD; 30 μm thicker than the #1 post) was used for 9 mm. The cement was cured for
20 seconds (Figure 1)
2. The teflon post was removed and freshly mixed cement was inserted into the space left by the Teflon post, followed
by the definitive placement of the fiber post (Figure 2)
Traditional micro-push-out 1. Twenty extracted human, single-rooted teeth were endodontically treated
2. Gutta-percha was removed with #1-2 peeso reamers (Mani), and the post space of each specimen was enlarged
with a standard drill system from the corresponding fiber post system to create a 9 mm post space with at least
4 mm of filling material in the root apex. The post space was rinsed with distilled water and dried with paper points.
3. Fiber posts for each group were cemented to the root canals with adhesive resin cement, according to the
manufacturer’s instructions

图1

改良式微推出实验第一步"

图2

改良式微推出实验第二步"

图3

试件测量示意图"

表3

组1M、组1T、组2M和组2T的微推出粘接强度(MPa)和破坏模式"

Group
(n=10)
Treatment Bond strength/MPa,
x?±s
failure modes, n
Adhesive p/r* Adhesive d/r* Cohesive Mixed
1M 30%phosphoricacid+silane modified micro-push-out 18.85±1.42 60 - 0 0
1T 30%phosphoricacid+silane 19.39±1.35 44 10 5 1
2M traditional micro-push-out no treatment 11.26±1.57 60 - 0 0
2T modified micro-push-out no treatment
traditional micro-push-out
11.27±1.83 35 16 4 5
[1] Soares CJ, Soares PV, de Freitas Santos-Filho PC, et al. The influence of cavity design and glass fiber posts on biomechanical behavior of endodontically treated premolars[J]. J Endod, 2008,34(8):1015-1019.
[2] Savychuk A, Manda M, Galanis C , et al. Stress generation in mandibular anterior teeth restored with different types of post-and-core at various levels of ferrule[J]. J Prosthet Dent, 2018,119(6):965-974.
[3] Strefezza C, Amaral MM, Quinto J Jr , et al. Effect of 830 nm diode laser irradiation of root canal on bond strength of metal and fiber post[J]. Photomed Laser Surq, 2018,36(8):439-444.
[4] Goracci C, Tavares AU, Fabianelli A , et al. The adhesion between fiber posts and root canal walls: comparison between microtensile and push-out bond strength measurements[J]. Eur J Oral Sci, 2004,112(4):353-361.
[5] Par M, Tarle Z, Hickel R , et al. Dentin bond strength of experimental composites containing bioactive glass: changes during aging for up to 1 year[J]. J Adhes Dent, 2018,20(4):325-334.
[6] Garcia C, Ruales-Carrera E, Prates LH , et al. Effect of different irrigations on the bond strength of self-adhesive resin cement to root dentin[J]. J Clin Exp Dent, 2018,10(2):e139-e145.
[7] Roydhouse RH . Punch-shear test for dental purposes[J]. J Dent Res, 1970,49:131-136.
[8] Garcia PP, da Costa RG, Garcia AV , et al. Effect of surface treatments on the bond strength of CAD/CAM fiber glass posts[J]. J Clin Exp Dent, 2018,10(6):e591-e597.
[9] Bohrer TC, Fontana PE, Wandscher VF , et al. Endodontic sealers affect the bong strength of fiber posts and the degree of conversion of two resin cements[J]. J Adhes Dent, 2018,20(2):165-172.
[10] Tuncdemir AR, Buyukerkmen EB, Celebi H , et al. Effects of postsurface treatments including femtosecond laser and aluminum-oxide airborne-partical abrasion on the bond strength of the fiber posts[J]. Niqer J Clin Pract, 2018,21(3):350-355.
[11] Shafiei F, Saadat M, Jowkar Z . Effect of laser heat treatment on Pull-out bond strength of fiber posts treated with different silanes[J]. J Clin Exp Dent, 2018,10(5):e413-e418.
[12] Feilzer AJ, De Gee AJ, Davidson CL . Setting stress in composite resin in relation to configuration of the restoration[J]. J Dent Res, 1987,66(11):1636-1639.
[13] Tay FR, Loushine RJ, Lambrechts P , et al. Geometric factors affecting dentin bonding in root canals: a theoretical modeling approach[J]. J Endod, 2005,31(8):584-589.
[14] Patierno JM, Rueggeberg FA, Anderson RW , et al. Push-out and SEM evaluation of resin composite bonded to internal cervical dentin[J]. J Endod Dent Traumatol, 1996,12(5):227-236.
[15] Bolhuis P, De Gee A, Feilzer A . The influence of fatigue loading on the quality of the cement layer and retention strength of carbon fiber post resin composite core restorations[J]. Oper Dent, 2005,30(2):220-227.
[16] Lin G, Geubelle PH, Sottos NR . Simulation of fiber debonding with friction in a model composite pushout test[J]. Int J Solids Struct, 2001,38(2):8547-8562.
[17] Soares CJ, Santana FR, Castro CG , et al. Finite element analysis and bond strength of a glass post to intraradicular dentin: comparison between microtensile and push-out tests[J]. Dent Mater, 2008,24(10):1405-1411.
[18] Belwalkar VR, Gade J, Mankar NP . Comparison of the effect of shear bond strength with silane and other three chemical presurface treatments of a glass fiber-reinforced post on adhesion with a resin-based luting agent: an in vitro study[J]. Contemp Clin Dent, 2016,7(2):193-197.
[19] Pyun JH, Shin TB, Lee JH , et al. Effects of hydrogen peroxide pretreatment and heat activation of silane on the shear bond strength of fiber-reinforced composite posts to resin cement[J]. J Adv Prosthodont, 2016,8(2):94-100.
[20] Cecchin D, Farina AP, Vitti RP , et al. Acid etching and surface coating of glass-fiber posts: bond strength and interface analysis[J]. Braz Dent J, 2016,27(2):228-233.
[21] Mosharraf R, Baghaei Yazdi N . Comparative evaluation of effects of different surface treatment methods on bond strength between fiber post and composite core[J]. J Adv Prosthodont, 2012,4(2):103-108.
[22] Aksornmuang J, Foxton RM, Nakajima M , et al. Microtensilebond strength of a dual cure resin core material to glass and quartz fibreposts[J]. J Dent, 2004,32(6):433-450.
[1] 阎腾龙,胥嘉钰,陈田,杨鑫,王伟伟,周淑佩,牛丕业,贾光,夏交. 亚慢性PM2.5和O3共同暴露对大鼠鼻黏膜ATP总量及ATP酶活性的影响[J]. 北京大学学报(医学版), 2024, 56(4): 687-692.
[2] 范莹莹,刘云,曹烨,谢秋菲. 海马参与雌激素加重咬合干扰致去卵巢大鼠慢性咬肌痛敏[J]. 北京大学学报(医学版), 2022, 54(1): 40-47.
[3] 薛江,张建运,时瑞瑞,谢晓艳,白嘉英,李铁军. 105例口腔颅颌面部纤维性结构不良的临床病理分析[J]. 北京大学学报(医学版), 2022, 54(1): 54-61.
[4] 王京旗,王霄. 掺锶磷酸钙骨水泥材料生物学性能的动物实验[J]. 北京大学学报(医学版), 2021, 53(2): 378-383.
[5] 张胜男,安娜,欧阳翔英,刘颖君,王雪奎. 生长停滞特异性蛋白6在人牙周膜细胞迁移及成骨分化中的作用[J]. 北京大学学报(医学版), 2021, 53(1): 9-15.
[6] 曹畅,王菲,王恩博,刘宇. β-磷酸三钙用于下颌第三磨牙拔除术后骨缺损修复的自身对照研究[J]. 北京大学学报(医学版), 2020, 52(1): 97-102.
[7] 孙智明,陈倩,李明华,马维宁,赵旭阳,黄卓. 小鼠卡英酸颞叶癫痫慢性发作期的磷酸化蛋白组学研究[J]. 北京大学学报(医学版), 2019, 51(2): 197-205.
[8] 方伟岗,田新霞. 肿瘤微环境中一种新型促侵袭因子的发现——细胞外ATP功能及机制的研究进展[J]. 北京大学学报(医学版), 2017, 49(2): 188-195.
[9] 姜蔚然,张晓,刘云松,吴刚,葛严军,周永胜. 骨形态发生蛋白-2-磷酸钙共沉淀支架与人脂肪间充质干细胞构建新型组织工程化骨[J]. 北京大学学报(医学版), 2017, 49(1): 6-015.
[10] 徐啸翔,曹烨,傅开元,谢秋菲. 咬合干扰致大鼠咬肌能量代谢产物含量变化[J]. 北京大学学报(医学版), 2017, 49(1): 25-030.
[11] 武东,孙琳,李常虹,杨麟,赵金霞,刘湘源. 抗瓜氨酸化葡萄糖-6-磷酸异构酶多肽抗体的检测及其在类风湿关节炎中的意义[J]. 北京大学学报(医学版), 2016, 48(6): 937-941.
[12] 徐婧,刘婧,朱雷,张学武,栗占国. 葡萄糖-6-磷酸异构酶水平测定与类风湿关节炎早期诊断[J]. 北京大学学报(医学版), 2016, 48(6): 942-946.
[13] 陈倩,苏永亮,蔡晴,白云洋,苏靖,王新知. 玻璃纤维桩表面经聚多巴胺或硅烷化处理后的微推出粘接强度对比研究[J]. 北京大学学报(医学版), 2015, 47(6): 1005-1009.
[14] 徐璐, 王超, 沈文文, 祁荣. 辛伐他汀纳米脂质体对骨髓间充质干细胞成骨分化的影响[J]. 北京大学学报(医学版), 2014, 46(6): 883-888.
[15] 马泽云, 王衣祥. 建立大鼠双膦酸盐相关颌骨骨坏死模型并初步分析其发病原因[J]. 北京大学学报(医学版), 2014, 46(6): 945-949.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!