北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (1): 144-151. doi: 10.19723/j.issn.1671-167X.2020.01.023

• 论著 • 上一篇    下一篇

三种数字化分析算法测量咬合接触分布及面积的对比研究

萧宁,孙玉春,赵一姣(),王勇()   

  1. 北京大学口腔医学院·口腔医院,口腔医学数字化研究中心,口腔修复教研室 国家口腔疾病临床医学研究中心口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2019-10-10 出版日期:2020-02-18 发布日期:2020-02-20
  • 通讯作者: 赵一姣,王勇 E-mail:kqcadcs@bjmu.edu.cn;kqcadc@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金面上项目(81870815);国家重点研发计划课题(2018YFB1106903);宁夏回族自治区重点研发计划重点项目课题(2018BEG02012)

Preliminary study on three digital analysis methods for analyzing the distribution and area of occlusal contacts

Ning XIAO,Yu-chun SUN,Yi-jiao ZHAO(),Yong WANG()   

  1. Center of Digital Dentistry, Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2019-10-10 Online:2020-02-18 Published:2020-02-20
  • Contact: Yi-jiao ZHAO,Yong WANG E-mail:kqcadcs@bjmu.edu.cn;kqcadc@bjmu.edu.cn
  • Supported by:
    Supported by the General Program of National Natural Science Foundation of China(81870815);the National Key R&D Program of China(2018YFB1106903);the Key R&D Program of Ningxia Hui Autonomous Region(2018BEG02012)

摘要:

目的:研究三种数字化分析算法测量石膏牙颌模型三维咬合接触分布及面积的检测效果,并与传统咬合分析方法进行比较,探究各数字化分析算法的特点和应用。方法:选取一副正常受试者的上、下颌石膏牙颌模型,使用3shape E4牙颌模型三维扫描仪进行数字化扫描得到数字模型,在三维测量分析软件Geomagic Studio 2013及Geomagic Qualify 2013中采用“三维偏差色阶图法”、“点云统计分析法”和“虚拟咬合纸法”三种数字化分析算法获得相应的三维咬合接触分布及面积,同时使用牙合记录硅橡胶法及咬合纸扫描法两种传统咬合分析方法获得咬合接触分布和面积。各方法的咬合检测阈值为100 μm,量化评价各数字化分析算法与传统咬合分析方法的检测结果。结果:上述五种方法所得的全牙列咬合接触分布的定性评价结果基本一致,三维偏差色阶图法、点云统计分析法、虚拟咬合纸法、牙合记录硅橡胶法和咬合纸扫描法所得到的总咬合接触面积分别为133.10 mm 2、142.08 mm 2、128.95 mm 2、163.31 mm 2、100.55 mm 2。三种数字化分析算法间的检测结果差异性不大,数字化方法与传统方法检测的总咬合接触面积有一定差异。结论:三种数字化分析算法均可提供较为可靠、准确的牙颌模型咬合接触分布及面积量化分析结果,可为口腔临床修复体数字化设计制作及咬合分析提供参考。

关键词: 咬合力, 牙模型, 牙牙合, 成像, 三维

Abstract:

Objective: To analyze the distribution and area of occlusal contacts of clinical dental model using three kinds of digital analysis methods, to compare the results of these methods and traditional occlusal analysis method, and to further analyze the characteristics of each digital analysis method. Methods: A set of plaster models of normal subjects was selected. The models were scanned by lab scanner 3shape E4 and the files were exported in a stereolithography file format. In 3D analysis software Geomagic Studio 2013 and Geomagic Qualify 2013, the corresponding results of 3D occlusal contact distribution and occlusal contact area were obtained through three digital analysis methods: “3D color difference map method”, “point cloud analysis method”, and “virtual articulating paper method”. The occlusal contact distribution and occlusal contact area were also obtained by two traditional occlusal analysis methods: “silicone interocclusal recording material method” and “scanned articulating paper mark method”. A threshold of 100 μm was used to analyze the occlusal contacts and 100 μm was also the thickness of arti-culating paper used in this study. The results of these five different occlusal analysis methods were evaluated qualitatively and quantitatively. Results: The results of 3D occlusal contact distribution obtained by the above five methods were basically consistent. The total occlusal contact area obtained by 3D color difference map method, point cloud analysis method, virtual articulating paper method, silicone interocclusal recording material method and scanned articulating paper mark method were 133.10 mm 2, 142.08 mm 2, 128.95 mm 2, 163.31 mm 2, and 100.55 mm 2 respectively. There was little difference between the results of three digital analysis methods. The results of occlusal contact area obtained by the digital methods and the traditional methods were different. Conclusion: The three digital analysis methods can provide reliable and accurate analysis results of occlusal contact distribution and occlusal contact area of dental model. The results obtained by these methods can serve as references for the digital occlusal surface design of dental prosthesis and clinical occlusal analysis.

Key words: Bite force, Dental models, Dental occlusion, Imaging, three-dimensional

中图分类号: 

  • R783

图1

实验用上、下颌石膏模型"

图2

上、下颌数字模型(A)和上、下颌均匀网格模型(B)"

图3

翻转下颌模型法线(A)、3D偏差分析色阶图(B)、手动勾勒着色区域边界(C)和牙列咬合接触区域提取结果(D)"

图4

裁剪下颌模型(A)、3D偏差分析结果(B)和咬合接触区域分布示意图(C)"

图5

选取下颌牙列咬合相关区域(A)、构建“虚拟咬合纸”模型(B)和咬合接触区域分布示意图(C)"

图6

嵌合硅橡胶的下颌组合模型(A)、双次扫描配准结果(B)、咬合记录厚度分析结果(C)和咬合接触区域分布示意图(D)"

图7

口内扫描咬合纸印记模型(A)和咬合接触区域分布示意图(B)"

图8

各方法所得全牙列咬合接触分布图"

表1

各方法获得的牙列咬合接触面积比较"

Items Digital occlusal analysis methods Traditional occlusal analysis methods
3D color difference
map method
Point cloud analysis method Virtual articulating paper method Silicone interocclusal recording material method Articulating paper mark scanning method
Occlusal contact area of anterior region 11.06 16.49 14.69 25.26 12.78
Occlusal contact area of posterior region 122.04 125.59 114.26 138.04 87.77
Occlusal contact area of left side 78.76 87.47 77.22 97.49 60.31
Occlusal contact area of right side 54.34 54.61 51.72 65.82 40.24
Total occlusal contact area 133.10 142.08 128.95 163.31 100.55
[1] 马斐斐, 胡秀莲, 林野 . 口腔种植修复与咬合[J]. 实用口腔医学杂志, 2013,29(1):121-123.
[2] Foz AM, Artese HP, Horliana AC , et al. Occlusal adjustment associated with periodontal therapy: A systematic review[J]. J Dent, 2012,40(12):1025-1035.
[3] 曾艳, 王嘉德 . 牙体牙髓病临床问题解析Ⅱ. 牙齿的慢性损伤性疾病[J]. 中华口腔医学杂志, 2009,44(7):441-443.
[4] 谢秋菲 . 牙体解剖与口腔生理学 [M]. 北京: 北京大学医学出版社, 2013.
[5] Abduo J, Bennamoun M, Tennant M , et al. Effect of prosthodontic planning on intercuspal occlusal contacts: Comparison of digital and conventional planning[J]. Comput Biol Med, 2015,60:143-150.
[6] Moreno-Hay I, Okeson JP . Does altering the occlusal vertical dimension produce temporomandibular disorders? A literature review[J]. J Oral Rehabil, 2015,42(11):875-882.
[7] 韩科, 张豪 . 牙合学理论与临床实践 [M]. 北京: 人民军医出版社, 2014.
[8] 宋倩, 王辉, 冯春雷 , 等. 咬合纸指导调牙合可靠性的定量研究[J]. 牙体牙髓牙周病学杂志, 2016,26(2):86-90.
[9] Koos B, Godt A, Schille C , et al. Precision of an instrumentation-based method of analyzing occlusion and its resulting distribution of forces in the dental arch[J]. J Orofac Orthop, 2010,71(6):403-410.
[10] Forrester SE, Presswood RG, Toy AC , et al. Occlusal measurement method can affect SEMG activity during occlusion[J]. J Oral Rehabil, 2011,38(9):655-660.
[11] 赵一姣, 王勇, 吕培军 . 一种基于数字化牙颌模型的三维咬合分析方法[J]. 北京大学学报(医学版), 2008,40(1):109-111.
[12] Gintaute A, Keeling AJ, Osnes CA , et al. Precision of maxillo-mandibular registration with intraoral scanners in vitro [J]. J Prosthodont Res, 2019, pii: S1883- 1958(19) 30145-8. doi: 10.1016/j.jpor.2019.05.006.[Epub ahead of print].
[13] Lee H, Cha J, Chun YS , et al. Comparison of the occlusal contact area of virtual models and actual models: a comparative in vitro study on Class Ⅰ and Class Ⅱ malocclusion models[J]. Bmc Oral Health, 2018,18(1):109.
[14] 陈磊, 张豪, 冯海兰 , 等. 正常受试者单侧咀嚼运动中的牙合接触模式[J]. 北京大学学报(医学版), 2009,41(1):90-94.
[15] Abduo J . Geometrical effects of conventional and digital prosthodontic planning wax-ups on lateral occlusal contact number, contact area, and steepness[J]. J Oral Sci, 2017,59(3):431-438.
[16] Iwase Y, Saitoh I, Okamoto A , et al. Do occlusal contact areas of maximum closing position during gum chewing and intercuspal position coincide?[J]. Arch Oral Biol, 2011,56(12):1616-1623.
[17] Schelb E, Kaiser DA, Brukl CE . Thickness and marking characteristics of occlusal registration strips[J]. J Prosthet Dent, 1985,54(1):122-126.
[18] Cohen-Levy J, Cohen N . Computerized analysis of occlusal contacts after lingual orthodontic treatment in adults[J]. Int Orthod, 2011,9(4):410-431.
[19] Qadeer S, Kerstein R, Kim RJ , et al. Relationship between arti-culation paper mark size and percentage of force measured with compu-terized occlusal analysis[J]. J Adv Prosthodont, 2012,4(1):7-12.
[20] Kerstein RB . Articulating paper mark misconceptions and compu-terized occlusal analysis technology: A clinical brief[J]. Dent Implantol Update, 2008,19(6):41-46.
[21] Toledo MF, Jóias RP, Marques-Iasi YS , et al. Thickness and marking quality of different occlusal contact registration strips[J]. J Appl Oral Sci, 2014,22(6):516-521.
[22] Malta Barbosa J, Urtula AB, Hirata R , et al. Thickness evaluation of articulating papers and foils[J]. J Esthet Restor Dent, 2018,30(1):70-72.
[23] Saraçoġlu A, Ozpinar B . In vivo and in vitro evaluation of occlusal indicator sensitivity[J]. J Prosthet Dent, 2002,88(5):522-526.
[24] Matsui Y, Ohno K, Michi K , et al. A computerized method for evaluating balance of occlusal load[J]. J Oral Rehabil, 1996,23(8):530-535.
[25] Imamura Y, Sato Y, Kitagawa N , et al. Influence of occlusal loading force on occlusal contacts in natural dentition[J]. J Prosthodont Res, 2015,59(2):113-120.
[26] Augusti D, Augusti G, Re D , et al. Effect of different dental articulating papers on SEMG activity during maximum clenching[J]. J Electromyogr Kinesiol, 2015,25(4):612-618.
[27] Sharma A, Rahul GR, Poduval ST , et al. History of materials used for recording static and dynamic occlusal contact marks: a literature review[J]. J Clin Exp Dent, 2013,5(1):e48-e53.
[28] 易新竹 . 牙合学[M]. 北京: 人民卫生出版社, 2012.
[29] Makino E, Nomura M, Motegi E , et al. Effect of orthodontic treatment on occlusal condition and masticatory function[J]. Bull Tokyo Dent Coll, 2014,55(4):185-197.
[30] Horie T, Kanazawa M, Komagamine Y , et al. Association between near occlusal contact areas and mixing ability[J]. J Oral Rehabil, 2014,41(11):829-835.
[31] 刘洋 . 调牙合——临床实用技术图解 [M]. 南京: 江苏凤凰科学技术出版社, 2018.
[32] Brizuela-Velasco A, Álvarez-Arenal Á, Ellakuria-Echevarria J , et al. Influence of articulating paper thickness on occlusal contacts registration: A preliminary report[J]. Int J Prosthodont, 2015,28(4):360-362.
[33] Komiyama O, Obara R, Iida T , et al. Comparison of direct and indirect occlusal contact examinations with different clenching intensities[J]. J Oral Rehabil, 2015,42(3):185-191.
[34] 程明轩, 姜婷, 孙玉春 , 等. 比较口内扫描和模型扫描对数字化牙列模型咬合定量分析的影响[J]. 北京大学学报(医学版), 2018,50(1):136-140.
[35] Ayuso-Montero R, Mariano-Hernandez Y, Khoury-Ribas L , et al. Reliability and validity of T-scan and 3D intraoral scanning for measuring the occlusal contact area[J]. J Prosthodont, 2019. doi: 10.1111/jopr.13096.
[36] Gupta S, Tarannum F, Gupta NK , et al. Effect of head posture on tooth contacts in dentate and complete denture wearers using computerized occlusal analysis system[J]. J Indian Prosthodont Soc, 2017,17(3):250-254.
[37] Nishimori H, Iida T, Kamiyama H , et al. Comparing the occlusal contact area of individual teeth during low-level clenching[J]. J Oral Sci, 2017,59(3):337-342.
[1] 刘思民,赵一姣,王晓燕,王祖华. 动态导航下不同深度环钻定位精确度的体外评价[J]. 北京大学学报(医学版), 2022, 54(1): 146-152.
[2] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[3] 任国勇,吴雪梅,李颖,李婕妤,孙伟平,黄一宁. 大血管闭塞性脑卒中亚急性期磁敏感血管征的表现[J]. 北京大学学报(医学版), 2021, 53(6): 1133-1138.
[4] 李媛,林红,张铁军. 对比传统成像与数字成像对牙科复合树脂X射线阻射性的影响[J]. 北京大学学报(医学版), 2021, 53(5): 995-1001.
[5] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[6] 邵振兴,宋庆法,赵宇晴,崔国庆. 一种结合线袢固定的关节镜下“嵌入式”喙突移位术:手术技术及术后影像学分析[J]. 北京大学学报(医学版), 2021, 53(5): 896-901.
[7] 吴一凡,张晓圆,任爽,玉应香,常翠青. 基于磁共振的青年男性股四头肌的测量和评估[J]. 北京大学学报(医学版), 2021, 53(5): 843-849.
[8] 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622.
[9] 胡迪,张苗,康惠颖,彭芸. 0~2岁婴幼儿磁共振脑白质模板的建立及验证[J]. 北京大学学报(医学版), 2021, 53(2): 341-347.
[10] 陈迪,徐翔宇,汪明睿,李芮,臧根奥,张悦,钱浩楠,闫光荣,范田园. 熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价[J]. 北京大学学报(医学版), 2021, 53(2): 348-354.
[11] 黄新瑞,李莎,高嵩. 冷冻电镜成像中噪声的滤波方法进展[J]. 北京大学学报(医学版), 2021, 53(2): 425-433.
[12] 穆海丽,田福聪,王晓燕,高学军. 玻璃体和通用型复合树脂耐磨性的临床对照研究[J]. 北京大学学报(医学版), 2021, 53(1): 120-125.
[13] 岳兆国,张海东,杨静文,侯建霞. 数字化评估CAD/CAM个性化基台与成品基台影响粘接剂残留的体外研究[J]. 北京大学学报(医学版), 2021, 53(1): 69-75.
[14] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[15] 国丹妮,潘韶霞,衡墨笛,屈健,魏秀霞,周永胜. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .