北京大学学报(医学版) ›› 2026, Vol. 58 ›› Issue (1): 60-67. doi: 10.19723/j.issn.1671-167X.2026.01.008

• 论著 • 上一篇    下一篇

大气压放电冷等离子体处理对人牙龈成纤维细胞生物学行为的影响

郑苗1, 马欣蓉1, 陈昊2, 赵恒欣3, 张宇4, 谭建国5, 李和平3,*(), 王霄1,*()   

  1. 1. 北京大学第三医院口腔科, 北京 100191
    2. 清华大学临床医学院(北京清华长庚医院), 北京 100084
    3. 清华大学工程物理系, 北京, 100084
    4. 清华大学基础医学院, 北京 100084
    5. 北京大学口腔医学院·口腔医院修复科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 北京 100081
  • 收稿日期:2025-09-24 出版日期:2026-02-18 发布日期:2026-01-05
  • 通讯作者: 李和平, 王霄
  • 基金资助:
    北京市自然科学基金(L232144)

Effects of cold atmosphere plasma treatment on the biological behavior of human gingival fibroblasts

Miao ZHENG1, Xinrong MA1, Hao CHEN2, Hengxin ZHAO3, Yu ZHANG4, Jianguo TAN5, Heping LI3,*(), Xiao WANG1,*()   

  1. 1. Department of Stomatology, Peking University Third Hospital, Beijing 100191, China
    2. School of Clinical Medicine, Tsinghua University (Beijing Tsinghua Changgung Hospital), Beijing 100084, China
    3. Department of Engineering Physics, Tsinghua University, Beijing 100084, China
    4. School of Basic Medical Sciences, Tsinghua University, Beijing 100084, China
    5. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing 100081, China
  • Received:2025-09-24 Online:2026-02-18 Published:2026-01-05
  • Contact: Heping LI, Xiao WANG
  • Supported by:
    Beijing Natural Science Foundation(L232144)

RICH HTML

  

摘要:

目的: 探究大气压放电冷等离子体(cold atmosphere plasma, CAP)直接作用于人牙龈成纤维细胞(human gingival fibroblasts, HGFs)对其迁移及增殖能力的影响, 以及作用效果的剂量相关性。方法: 采用常压冷等离子体生物医学实验台作为CAP的发生装置, 通过固定放电电压、频率和气流量保证CAP源特性恒定, 通过调整放电时间产生不同剂量CAP并处理HGFs。实验分为未经CAP处理组及CAP处理20 s、60 s、120 s、180 s组, 检测不同剂量CAP处理后HGFs培养液的温度、酸碱度、活性氧(reactive oxygen species, ROS)含量。通过免疫荧光染色观察不同剂量CAP处理后HGFs的形貌, 并测算细胞周长及面积; 通过划痕实验检测不同剂量CAP处理后HGFs的迁移能力; 通过细胞计数试剂盒检测不同剂量CAP处理后HGFs的增殖能力。结果: 随着处理时间的延长, 常压冷等离子体生物医学实验台产生CAP的剂量为0~210.6 J。不同剂量CAP不改变HGFs培养液温度。随着CAP剂量的不断增加, HGFs培养液pH由初始的8.18±0.06先降低至8.13±0.20, 再逐渐升高至8.63±0.15(P<0.05)。细胞培养液中H2O2浓度在CAP处理60 s组达到峰值, 为(55.96±1.51) μmol/L, 随着处理时间的进一步延长逐渐降低至(22.92±0.57) μmol/L(P<0.05)。CAP处理20 s组HGFs细胞表面积更大, 伸出伪足更多; 而CAP处理180 s组的部分HGFs呈现窄长梭形, 表面积较CAP处理20 s组减小。相较于未处理组, CAP处理20 s可显著提升HGFs的迁移及增殖能力(P<0.05), 而CAP处理180 s会抑制HGFs的迁移及增殖能力(P<0.05)。结论: 不同剂量CAP处理会改变HGFs培养液的酸碱度及ROS含量; CAP处理对HGFs生物学行为的影响存在剂量相关性, 低剂量CAP处理可增强HGFs的迁移能力及增殖能力, 而过高剂量CAP处理则会抑制HGFs的迁移及增殖能力。

关键词: 大气压放电冷等离子体, 成纤维细胞, 牙龈, 活性氧

Abstract:

Objective: To preliminarily investigate the effects of direct treatment with cold atmosphere plasma (CAP) on the migration and proliferation capabilities of human gingival fibroblasts (HGFs), as well as the correlation between the doses and the effects. Methods: The CAP Bio-Med Platform was used to generate the CAP in this study. The characteristics of the CAP source were kept constant by fixing the discharge voltage, frequency, and gas flow rate. Different CAP doses were generated by adjusting the discharge time (20 s, 60 s, 120 s, 180 s) and used to treat HGFs. The temperature, pH, and reactive oxygen species (ROS) levels in the HGFs culture medium were measured following treatment with different CAP doses. The morphology of the HGFs after treatment was observed via immunofluorescence staining, and the cell perimeter and area were calculated. The migration ability of the HGFs after treatment was assessed using a scratch assay, and their proliferation ability was evaluated using a cell counting kit. Results: As the treatment duration increased, the CAP dose generated by the platform ranged from 0 J to 210.6 J. Different CAP doses did not affect the temperature of the HGFs culture medium. As the CAP dose increased, the pH of the HGFs culture medium first decreased from an initial 8.18±0.06 to 8.13±0.20, then gradually increased to 8.63±0.15 (P < 0.05). The concentration of H2O2 in the culture medium peaked at (55.96±1.51) μmol/L in the 60 s CAP treatment group. With an extension in treatment time, the concentration decreased gradually to (22.92±0.57) μmol/L (P < 0.05). Following low-dose CAP treatment (20 s), HGFs exhibited a larger surface area and more pseudopodia extensions. In contrast, following excessively high-dose CAP treatment(180 s), some HGFs displayed a narrow, elongated spindle shape with a smaller surface area than the low-dose group. Compared with the untreated group, low-dose CAP treatment significantly enhanced the migration and proliferation abilities of HGFs (P < 0.05), whereas excessively high-dose CAP treatment inhibited HGFs migration and proliferation (P < 0.05). Conclusion: Treatment with different doses of CAP alters the pH and ROS levels of the HGFs culture medium. CAP treatment has a dose-dependent effect on the biological behavior of HGFs: Low-dose treatment enhances migration and proliferation, while excessively high-dose treatment inhibits these abilities.

Key words: Cold atmospheric plasma, Fibroblasts, Gingiva, Reactive oxygen species

中图分类号: 

  • R783.6

图1

常压冷等离子体生物医学实验台"

图2

对照组及CAP处理组细胞培养液中温度,pH及H2O2浓度"

图3

高内涵细胞成像系统观察对照组及CAP处理组HGFs形态(免疫荧光染色×20)"

图4

对照组及CAP处理组HGFs的表面积(A)及周长(B)"

图5

划痕制备后对照组及CAP处理组HGFs迁移图像"

图6

不同剂量CAP处理后12 h(A)和24 h(B)HGFs的迁移能力"

图7

对照组及CAP处理组HGFs培养24 h(A)、48 h(B)、72 h(C)细胞增殖能力(CCK-8)"

1
Berglundh T , Armitage G , Araujo MG , et al. Peri-implant diseases and conditions: Consensus report of workgroup 4 of the 2017 World Workshop on the Classification of Periodontal and Peri-Implant Diseases and Conditions[J]. J Clin Periodontol, 2018, 45 (Suppl 20): S286- S291.
2
Galarraga-Vinueza ME , Pagni S , Finkelman M , et al. Prevalence, incidence, systemic, behavioral, and patient-related risk factors and indicators for peri-implant diseases: An AO/AAP systematic review and meta-analysis[J]. J Periodontol, 2025, 96 (6): 587- 633.

doi: 10.1002/JPER.24-0154
3
Barootchi S , Wang HL . Peri-implant diseases: Current understanding and management[J]. Int J Oral Implantol (Berl), 2021, 14 (3): 263- 282.
4
Hakkers J , Vangsted TE , van Winkelhoff AJ , et al. Do systemic amoxicillin and metronidazole during the non-surgical peri-implantitis treatment phase prevent the need for future surgical treatment? A retrospective long-term cohort study[J]. J Clin Periodontol, 2024, 51 (8): 997- 1004.

doi: 10.1111/jcpe.14024
5
Laroussi M , Bekeschus S , Keidar M , et al. Low-temperature plasma for biology, hygiene, and medicine: Perspective and roadmap[J]. IEEE Trans Radiat Plasma Med Sci, 2022, 6 (2): 127- 157.

doi: 10.1109/TRPMS.2021.3135118
6
Yang Y , Zheng M , Jia YN , et al. Time-dependent reactive oxygen species inhibit Streptococcus mutans growth on zirconia after a helium cold atmospheric plasma treatment[J]. Mater Sci Eng C Mater Biol Appl, 2021, 120, 111633.

doi: 10.1016/j.msec.2020.111633
7
Yang Y , Zheng M , Yang Y , et al. Inhibition of bacterial growth on zirconia abutment with a helium cold atmospheric plasma jet treatment[J]. Clin Oral Investig, 2020, 24 (4): 1465- 1477.

doi: 10.1007/s00784-019-03179-2
8
Zheng M , Ma XR , Tan JG , et al. Enhancement of biocompatibility of high-transparency zirconia abutments with human gingival fibroblasts via cold atmospheric plasma treatment: An in vitro study[J]. J Funct Biomater, 2024, 15 (7): 200.

doi: 10.3390/jfb15070200
9
Alqutaibi AY , Aljohani A , Alduri A , et al. The effectiveness of cold atmospheric plasma (CAP) on bacterial reduction in dental implants: A systematic review[J]. Biomolecules, 2023, 13 (10): 1528.

doi: 10.3390/biom13101528
10
Li J , Zhao LX , He T , et al. A novel method for estimating the dosage of cold atmospheric plasmas in plasma medical applications[J]. Appl Sci, 2021, 11 (23): 11135.

doi: 10.3390/app112311135
11
Kogelschatz U . Dielectric-barrier discharges: Their history, discharge physics, and industrial applications[J]. Plasma Chem Plasma Process, 2003, 23 (1): 1- 46.

doi: 10.1023/A:1022470901385
12
Matthes R , Jablonowski L , Miebach L , et al. In-vitro biofilm removal efficacy using water jet in combination with cold plasma technology on dental titanium implants[J]. Int J Mol Sci, 2023, 24 (2): 1606.

doi: 10.3390/ijms24021606
13
Matthes R , Jablonowski L , Pitchika V , et al. Training in the use of the water jet and cold atmospheric plasma jet for the decontamination of dental implants[J]. Clin Oral Investig, 2024, 28 (6): 355.

doi: 10.1007/s00784-024-05749-5
14
El Shishiny SA , Morad YO , Hindi RI , et al. Efficacy of non-thermal pressure plasma versus other modalities for disinfection of primary root canals[J]. BMC Oral Health, 2025, 25 (1): 54.

doi: 10.1186/s12903-024-05349-5
15
Hahn O , Waheed TO , Sridharan K , et al. Cold atmospheric pressure plasma-activated medium modulates cellular functions of human mesenchymal stem/stromal cells in vitro[J]. Int J Mol Sci, 2024, 25 (9): 4944.

doi: 10.3390/ijms25094944
16
Wu Y , Yu S , Zhang X , et al. The regulatory mechanism of cold plasma in relation to cell activity and its application in biomedical and animal husbandry practices[J]. Int J Mol Sci, 2023, 24 (8): 7160.

doi: 10.3390/ijms24087160
17
Scharf C , Eymann C , Emicke P , et al. Improved wound healing of airway epithelial cells is mediated by cold atmospheric plasma: A time course-related proteome analysis[J]. Oxid Med Cell Longev, 2019, 2019, 7071536.
18
Konchekov EM , Glinushkin AP , Kalinitchenko VP , et al. Properties and use of water activated by plasma of piezoelectric direct discharge[J]. Front Phys, 2021, 8, 616385.

doi: 10.3389/fphy.2020.616385
19
Adachi T , Tanaka H , Nonomura S , et al. Plasma-activated medium induces A549 cell injury via a spiral apoptotic cascade involving the mitochondrial-nuclear network[J]. Free Radic Biol Med, 2015, 79, 28- 44.

doi: 10.1016/j.freeradbiomed.2014.11.014
20
Lee JH , Jaiswal MS , Jang YS , et al. No-ozone cold plasma induces apoptosis in human neuroblastoma cell line via increased intracellular reactive oxygen species (ROS)[J]. BMC Complement Med Ther, 2024, 24 (1): 46.

doi: 10.1186/s12906-023-04313-0
21
Kaushik N , Mitra S , Baek EJ , et al. The inactivation and destruction of viruses by reactive oxygen species generated through physical and cold atmospheric plasma techniques: Current status and perspectives[J]. J Adv Res, 2023, 43, 59- 71.

doi: 10.1016/j.jare.2022.03.002
22
Boeckmann L , Schäfer M , Bernhardt T , et al. Cold atmospheric pressure plasma in wound healing and cancer treatment[J]. Appl Sci, 2020, 10 (19): 6898.

doi: 10.3390/app10196898
23
Dai X , Bazaka K , Thompson EW , et al. Cold atmospheric plasma: A promising controller of cancer cell states[J]. Cancers (Basel), 2020, 12 (11): 3360.

doi: 10.3390/cancers12113360
24
Dai X , Wu J , Lu L , et al. Current status and future trends of cold atmospheric plasma as an oncotherapy[J]. Biomol Ther (Seoul), 2023, 31 (5): 496- 514.

doi: 10.4062/biomolther.2023.027
25
Milhan NVM , Chiappim W , Sampaio ADG , et al. Applications of plasma-activated water in dentistry: A review[J]. Int J Mol Sci, 2022, 23 (8): 4131.

doi: 10.3390/ijms23084131
26
Sampaio ADG , Chiappim W , Milhan NVM , et al. Effect of the pH on the antibacterial potential and cytotoxicity of different plasma-activated liquids[J]. Int J Mol Sci, 2022, 23 (22): 13893.

doi: 10.3390/ijms232213893
[1] 袁显墩, 李照华, 徐丹, 李婷, 方丹, 穆荣. 丝氨酸蛋白酶23在系统性硬化病皮肤纤维化中的作用和机制[J]. 北京大学学报(医学版), 2025, 57(5): 903-910.
[2] 王鹃, 邱立新, 尉华杰. 下颌磨牙穿龈形态设计对种植体周围软组织影响的随机对照临床研究[J]. 北京大学学报(医学版), 2025, 57(1): 65-72.
[3] 赵柯林, 夏雪, 史乃旭, 周韩, 盖婧雯, 李萍. 铁死亡标志物4-HNE在系统性硬化症细胞模型中的表达及意义[J]. 北京大学学报(医学版), 2024, 56(6): 950-955.
[4] 何珊,陈炘,程琦,朱灵江,张培玉,童淑婷,薛静,杜燕. 托法替布通过JAK/STAT3通路抑制肺成纤维细胞向肌成纤维细胞转化[J]. 北京大学学报(医学版), 2024, 56(3): 505-511.
[5] 赵祥格,刘佳庆,黄会娜,陆智敏,白自然,李霞,祁荆荆. 干扰素-α介导系统性红斑狼疮外周血CD56dimCD57+自然杀伤细胞功能的损伤[J]. 北京大学学报(医学版), 2023, 55(6): 975-981.
[6] 卢汉,张建运,杨榕,徐乐,李庆祥,郭玉兴,郭传瑸. 下颌牙龈鳞状细胞癌患者预后的影响因素[J]. 北京大学学报(医学版), 2023, 55(4): 702-707.
[7] 梁秀睿,闪雪纯,关晶,张锐,杨静,张怡,金佳琦,张誉馨,徐凡,傅继华. 高血糖诱导肝星状细胞5-羟色胺降解在2型糖尿病致肝脏炎症和纤维化时的作用[J]. 北京大学学报(医学版), 2022, 54(6): 1141-1150.
[8] 蔡天玉,朱振鹏,徐纯如,吉星,吕同德,郭振可,林健. 成纤维细胞生长因子受体2在肾透明细胞癌中的表达及意义[J]. 北京大学学报(医学版), 2022, 54(4): 628-635.
[9] 袁临天,马利沙,刘润园,齐伟,张栌丹,王贵燕,王宇光. 计算机模拟亚甲基蓝与牙龈卟啉单胞菌部分蛋白的分子对接[J]. 北京大学学报(医学版), 2022, 54(1): 23-30.
[10] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[11] 郜洪宇,孟焕新,侯建霞,黄宝鑫,李玮. 钙结合蛋白在健康牙周组织和实验性牙周炎组织的表达分布[J]. 北京大学学报(医学版), 2021, 53(4): 744-749.
[12] 轩艳,蔡宇,王啸轩,石巧,邱立新,栾庆先. 牙龈卟啉单胞菌感染对载脂蛋白e基因敲除小鼠动脉粥样硬化的影响[J]. 北京大学学报(医学版), 2020, 52(4): 743-749.
[13] 陈子圆,钟金晟,欧阳翔英,周爽英,谢颖,娄新哲. 牙龈退缩患牙的牙龈厚度评估[J]. 北京大学学报(医学版), 2020, 52(2): 339-345.
[14] 石冰清,袁晓静,赵玉鸣. 比较矿物三氧化物凝聚体及山东蜂胶乙醇提取物对牙髓成纤维细胞生物学性能的影响[J]. 北京大学学报(医学版), 2019, 51(6): 1108-1114.
[15] 郑苗,詹凌璐,刘志强,李和平,谭建国. 不同等离子体处理氧化锆对人牙龈成纤维细胞黏附能力的影响[J]. 北京大学学报(医学版), 2019, 51(2): 315-320.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!