北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (3): 564-570. doi: 10.19723/j.issn.1671-167X.2019.03.028
周仁1,郑鸿尘1,李文咏1,王梦莹1,王斯悦1,李楠2,李静3,周治波2,吴涛1,朱洪平2△()
Ren ZHOU1,Hong-chen ZHENG1,Wen-yong LI1,Meng-ying WANG1,Si-yue WANG1,Nan LI2,Jing LI3,Zhi-bo ZHOU2,Tao WU1,Hong-ping ZHU2△()
摘要: 目的 探索SPRY基因家族中的单核苷酸多态性及亲源效应与中国人群非综合征型唇腭裂发病风险的关联。方法 研究基于病例-双亲设计,以2016—2018年于北京大学口腔医院募集的 183个中国人群非综合征型唇裂合并或不合并腭裂(non-syndromic cleft lip with or without cleft palate,NSCL/P)核心家系(549人)为研究对象。利用其二代测序数据中的SPRY基因家族相关信息,展开单核苷酸多态性和亲源效应分析。该测序研究采用二阶段设计,第一阶段对24个家系进行全外显子组测序探索潜在阳性信号,第二阶段在159个家系的独立样本中对第一阶段结果进行验证。采用问卷调查收集NSCL/P患者及其父母的基本情况、患病情况、临床特征及孕期环境暴露等信息。收集患儿及其父母的血液并提取DNA进行基因检测以获取遗传信息。单核苷酸多态性分析采用传递不平衡检验,亲源效应分析采用Z检验,统计分析使用PLINK(v1.07)软件完成。第一阶段的多位点分析采用以家系为基础的序列核心关联检验方法,由R软件(v3.5.1)famSKAT-RC包完成。采用Bonferroni法对验证结果进行多重检验校正。结果 经过质量控制,第一阶段共有22个SPRY基因家族的位点纳入分析,结合位点的注释、功能预测结果及统计检验结果,纳入rs1298215244 (SPRY1)和rs504122 (SPRY2)两个位点进入二阶段验证。二阶段传递不平衡检验发现,rs1298215244: T>C、rs504122: G>C两种常见变异以及rs504122: G>T罕见变异与NSCL/P的关联达到Bonferroni多重检验校正后的显著性水平,位于SPRY1的rs1298215244: T>C其亲源效应矫正前具有统计学意义,但未能通过多重检验校正。结论 发现SPRY基因家族中的单核苷酸多态性与中国人群NSCL/P的发病风险存在关联,但未发现SPRY基因家族具有亲源效应。
中图分类号:
[1] | Panamonta V, Pradubwong S, Panamonta M , et al. Global birth prevalence of orofacial clefts: a systematic review[J]. J Med Assoc Thai, 2015,98(Suppl 7):S11-S21. |
[2] | Dai L, Zhu J, Mao M , et al. Time trends in oral clefts in Chinese newborns: data from the Chinese National Birth Defects Monitoring Network[J]. Birth Defects Res A Clin Mol Teratol, 2010,88(1):41-47. |
[3] |
Beaty TH, Murray JC, Marazita ML , et al. A genome-wide association study of cleft lip with andwithout cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010,42(6):525-529.
doi: 10.1038/ng.580 |
[4] |
Mangold E, Ludwig KU, Birnbaum S , et al. Genome-wide association study identifies two susceptibility loci for nonsyndromic cleft lip with or without cleft palate[J]. Nat Genet, 2010,42(1):24-26.
doi: 10.1038/ng.506 |
[5] | Leslie EJ, Carlson JC, Shaffer JR , et al. A multi-ethnic genome-wide association study identifies novel loci for non-syndromic cleft lip with or without cleft palate on 2p24.2, 17q23 and 19q13[J]. Hum Mol Genet, 2016,25(13):2862-2872. |
[6] |
Yu Y, Zuo X, He M , et al. Genome-wide analyses of non-syndromic cleft lip with palate identify 14 novel loci and genetic heterogeneity[J]. Nat Commun, 2017,8:14364-14374.
doi: 10.1038/ncomms14364 |
[7] |
Leslie EJ, Carlson JC, Shaffer JR , et al. Association studies of low-frequency coding variants in nonsyndromic cleft lip with or without cleft palate[J]. Am J Med Genet A, 2017,173(6):1531-1538.
doi: 10.1002/ajmg.a.38210 |
[8] |
Collins FS, Guyer MS, Charkravarti A . Variations on a theme: cataloging human DNA sequence variation[J]. Science, 1997,278(5343):1580-1581.
doi: 10.1126/science.278.5343.1580 |
[9] |
McCarthy MI, Abecasis GR, Cardon LR , et al. Genome-wide association studies for complex traits: consensus, uncertainty and challenges[J]. Nat Rev Genet, 2008,9(5):356-369.
doi: 10.1038/nrg2344 |
[10] |
Zuk O, Hechter E, Sunyaev SR , et al. The mystery of missing heritability: Genetic interactions create phantom heritability[J]. Proc Natl Acad Sci USA, 2012,109(4):1193-1198.
doi: 10.1073/pnas.1119675109 |
[11] |
Thisse B, Thisse C . Functions and regulations of fibroblast growth factor signaling during embryonic development[J]. Dev Biol, 2005,287(2):390-402.
doi: 10.1016/j.ydbio.2005.09.011 |
[12] |
Mason JM, Morrison DJ, Basson MA , et al. Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling[J]. Trends Cell Biol, 2006,16(1):45-54.
doi: 10.1016/j.tcb.2005.11.004 |
[13] |
Stanier P, Pauws E . Development of the lip and palate: FGF signalling[J]. Front Oral Biol, 2012,16:71-80.
doi: 10.1159/000337618 |
[14] |
Ludwig KU, Mangold E, Herms S , et al. Genome-wide meta-analyses of nonsyndromic cleft lip with or without cleft palate identify six new risk loci[J]. Nat Genet, 2012,44(9):968-971.
doi: 10.1038/ng.2360 |
[15] | Jia Z, Leslie EJ, Cooper ME , et al. Replication of 13q31.1 association in nonsyndromic cleft lip with cleft palate in Europeans[J]. Am J Med Genet A, 2015,167A(5):1054-1060. |
[16] |
Moreno Uribe LM, Fomina T, Munger RG , et al. A population-based study of effects of genetic loci on orofacial clefts[J]. J Dent Res, 2017,96(11):1322-1329.
doi: 10.1177/0022034517716914 |
[17] |
Ward LD, Kellis M . HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants[J]. Nucleic Acids Res, 2012,40(Database issue):D930-D934.
doi: 10.1093/nar/gkr917 |
[18] |
Iyengar SFarnham PJ . KAP1 protein: an enigmatic master regulator of the genome[J]. J Biol Chem, 2011,286(30):26267-26276.
doi: 10.1074/jbc.R111.252569 |
[19] |
Hacohen N, Kramer S, Sutherland D , et al. sprouty encodes a novel antagonist of FGF signaling that patterns apical branching of the Drosophila airways[J]. Cell, 1998,92(2):253-263.
doi: 10.1016/S0092-8674(00)80919-8 |
[20] |
Gross I, Bassit B, Benezra M , et al. Mammalian sprouty proteins inhibit cell growth and differentiation by preventing ras activation[J]. J Biol Chem, 2001,276(49):46460-46468.
doi: 10.1074/jbc.M108234200 |
[21] |
Impagnatiello MA, Weitzer S, Gannon G , et al. Mammalian sprouty-1 and -2 are membrane-anchored phosphoprotein inhibitors of growth factor signaling in endothelial cells[J]. J Cell Biol, 2001,152(5):1087-1098.
doi: 10.1083/jcb.152.5.1087 |
[22] |
Yang X, Kilgallen S, Andreeva V , et al. Conditional expression of Spry1 in neural crest causes craniofacial and cardiac defects[J]. BMC Dev Biol, 2010,10:48-59.
doi: 10.1186/1471-213X-10-48 |
[23] |
Goodnough LH, Brugmann SA, Hu D , et al. Stage-dependent craniofacial defects resulting from Sprouty2 overexpression[J]. Dev Dyn, 2007,236(7):1918-1928.
doi: 10.1002/(ISSN)1097-0177 |
[24] |
Matsumura K, Taketomi T, Yoshizaki K , et al. Sprouty2 controls proliferation of palate mesenchymal cells via fibroblast growth factor signaling[J]. Biochem Biophys Res Commun, 2011,404(4):1076-1082.
doi: 10.1016/j.bbrc.2010.12.116 |
[25] |
Guilmatre A, Sharp AJ . Parent of origin effects[J]. Clin Genet, 2012,81(3):201-209.
doi: 10.1111/cge.2012.81.issue-3 |
[1] | 薛恩慈, 陈曦, 王雪珩, 王斯悦, 王梦莹, 李劲, 秦雪英, 武轶群, 李楠, 李静, 周治波, 朱洪平, 吴涛, 陈大方, 胡永华. 中国人群非综合征型唇裂伴或不伴腭裂的单核苷酸多态性遗传度[J]. 北京大学学报(医学版), 2024, 56(5): 775-780. |
[2] | 侯天姣,周治波,王竹青,王梦莹,王斯悦,彭和香,郭煌达,李奕昕,章涵宇,秦雪英,武轶群,郑鸿尘,李静,吴涛,朱洪平. 转化生长因子β信号通路与非综合征型唇腭裂发病风险的基因-基因及基因-环境交互作用[J]. 北京大学学报(医学版), 2024, 56(3): 384-389. |
[3] | 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,周治波,朱洪平,吴涛,胡永华. WNT信号通路基因位点单体型与中国汉族人群非综合征型唇腭裂发病风险的关联[J]. 北京大学学报(医学版), 2022, 54(3): 394-399. |
[4] | 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,李静,李楠,周治波,朱洪平,吴涛,胡永华. WNT代谢通路相关基因与中国人群非综合征型唇腭裂发病风险的交互作用[J]. 北京大学学报(医学版), 2020, 52(5): 815-820. |
[5] | 李文咏,王梦莹,周仁,王斯悦,郑鸿尘,朱洪平,周治波,吴涛,王红,石冰. 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020, 52(5): 809-814. |
[6] | 张杰铌,宋凤岐,周绍楠,郑晖,彭丽颖,张倩,赵望泓,张韬文,李巍然,周治波,林久祥,陈峰. 中国唇腭裂患者Sonic hedgehog信号通路相关单核苷酸多态性的分析[J]. 北京大学学报(医学版), 2019, 51(3): 556-563. |
[7] | 王竹青, 王苹, 吴雅慧, 叶晓茜, 黄尚志, 石冰, 王科, 袁园, 刘冬静, 吴涛, 王红, Terri H. Beaty. 中国人群转化生长因子β信号通路上的基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2015, 47(3): 384-389. |
[8] | 岳青, 王红, 张博, 赵凯平. SUMO1基因单核苷酸多态性分析及rs7599810多态性与非综合征型唇/腭裂的关联研究[J]. 北京大学学报(医学版), 2014, 46(2): 258-263. |
[9] | 王苹, 王红, 吴雅慧, 叶晓茜, 黄尚志, 石冰, 梁赓义, 曹卫华, 吴涛, Terri H. BEATY. 中国人群叶酸/同型半胱氨酸代谢基因多态性与非综合征型唇腭裂关联研究[J]. 北京大学学报(医学版), 2013, 45(03): 352-358. |
|