北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (3): 486-491. doi: 10.19723/j.issn.1671-167X.2020.03.014

• 论著 • 上一篇    下一篇

身体活动、静坐行为的时间分布与肥胖的关系

那晓娜1,朱珠1,陈阳阳1,王东平2,王浩杰2,宋阳2,马晓川1,王培玉1,刘爱萍1,()   

  1. 1. 北京大学公共卫生学院社会医学与健康教育系,北京 100191
    2. 乌海市疾病预防控制中心,内蒙古自治区乌海 016000
  • 收稿日期:2020-02-06 出版日期:2020-06-18 发布日期:2020-06-30
  • 通讯作者: 刘爱萍 E-mail:apingliu@163.com
  • 基金资助:
    乌海市成人慢性病及危险因素调查项目

Associations of distribution of time spent in physical activity and sedentary behavior with obesity

Xiao-na NA1,Zhu ZHU1,Yang-yang CHEN1,Dong-ping WANG2,Hao-jie WANG2,Yang SONG2,Xiao-chuan MA1,Pei-yu WANG1,Ai-ping LIU1,()   

  1. 1. Department of Social Medicine and Health Education, Peking University School of Public Health, Beijing 100191, China
    2. Center for Disease Control and Prevention of Wuhai City, Wuhai 016000, Inner Mongolia, China
  • Received:2020-02-06 Online:2020-06-18 Published:2020-06-30
  • Contact: Ai-ping LIU E-mail:apingliu@163.com
  • Supported by:
    Program for the Investigation on the Health Status of Adult Residents in Wuhai City

RICH HTML

  

摘要:

目的 综合探究乌海市成年居民身体活动(physical activity, PA)、静坐行为(sedentary behavior, SB)的时间分布与肥胖的关系。方法 采用多阶段整群随机抽样,以乌海市18~79岁常住居民为研究对象进行横断面调查。通过问卷调查、体格检查收集研究对象的社会人口学信息、PA和SB时间、饮食摄入、慢性病控制情况、身高、体质量、腰围及其他协变量。成分线性回归分析PA、SB的时间分布与肥胖的关系,以及时间重新分配后对肥胖的影响。结果 成分线性回归结果显示,控制混杂因素后,职业与非职业人群PA、SB的时间占比与体重指数(body mass index, BMI)、腰围身高比(waist to height ratio, WHtR)的负自然对数(-lnWHtR)的关系均有统计学意义(P均<0.001)。职业人群中,中高强度PA的时间占比与-lnWHtR呈负相关(β=-0.008, P=0.022),而SB时间占比与BMI、-lnWHtR呈正相关(β=0.117, P=0.003; β=0.007, P=0.005)。非职业人群中,中高强度PA的时间占比与BMI呈负相关(β=-0.079, P=0.041)。职业与非职业人群中,低强度PA的时间占比与BMI、-lnWHtR 关系无统计学意义。时间重新分配结果显示,10 min的中高强度PA代替低强度PA和SB对肥胖的影响更大。结论 在运动指南的制定以及健康管理的实践中,综合考虑不同人群PA、SB的时间分布对健康的影响,而非简单地增减PA或SB的绝对时间,将取得更长远的健康效果。

关键词: 成分数据分析, 肥胖, 身体活动, 静坐行为

Abstract:

Objective: To explore associations of distribution of time spent in physical activity (PA) and sedentary behavior (SB) with obesity with taking account that time is finite during the day of adult residents in Wuhai City.Methods: A cross-sectional study was undertaken in Wuhai City, and we carried out a sampling of local residents aged 18-79 by using multiple stratified cluster sampling method. Data about social demographic characteristics, time spent in PA and SB, diet intake, controlling situation of chronic disease and other covariates were obtained by qualified investigators for face-to-face questionnaire survey. Data about height, weight, and waist circumstance, were obtained by doctors in a secondary hospital or above for body measurements. The statistical method used in our study was known as compositional data analysis, which had been used to process compositional data in many fields. Liner regression analysis with compositional data was used to synthetically analyze the associations of distribution of time spent in PA and SB with obesity,and to investigate the effect of re-allocating time from one behavior to another one whilst the remaining one was kept stable.Results: The investigation revealed the special advantage of compositional data analysis in processing time-use data. The result of liner regression analysis with the compositional data showed that after controlling the potential confounding factors, the associations of distribution of time spent in PA and SB was significantly associated with body mass index (BMI, P<0.001) and the negative natural logarithm of waist to height ratio (-lnWHtR, P<0.001). Among them, in professional population, the proportion of time spent in moderate-to-vigorous physical activity (MVPA) was negatively correlated with -lnWHtR (β=-0.008, P=0.022), while the proportion of time spent in SB was positively correlated with BMI and -lnWHtR (β=0.117, P=0.003; β=0.007, P=0.005). However, in nonprofessional population, the proportion of time spent in MVPA was only negatively correlated with BMI (β=-0.079, P=0.041). Nevertheless, the proportion of time spent in low-intensity physical activity (LIPA) was not significantly associated with BMI and -lnWHtR in both professional and nonprofessional population. In addition, the effects of MVPA replacing another behavior and of MVPA being displaced by another behavior were not symmetrical, and 10 minutes of MVPA replacing LIPA or SB had a greater influence on intervention and prevention of obesity than 10 minutes MVPA being replaced by LIPA or SB.Conclusion: The research has resulted in a solution of the associations of the distribution of time spent in PA, SB with health risk. Our results suggest that public health messages should target the health effects of the distribution of time of PA and SB synergistically in developing PA guidelines and health management practice, rather than simply increasing or decreasing the absolute time of PA or SB, so that we can provide scientific suggestions to make people get a profounder healthy effect.

Key words: Compositional data analysis, Obesity, Physical activity, Sedentary behavior

中图分类号: 

  • R163

表1

身体活动、静坐时间的算术均数与成分均数比较"

Items MVPA/min LIPA/min SB/min
Professional population
Arithmetic mean 114.35 (11.76%) 459.40 (47.26%) 398.41 (40.98%)
Compositional mean 94.16 (9.81%) 468.40 (48.79%) 397.44 (41.40%)
Nonprofessional population
Arithmetic mean 125.86 (12.54%) 603.45 (60.11%) 274.67 (27.36%)
Compositional mean 110.01 (11.46%) 600.00 (62.50%) 249.99 (26.04%)

表2

身体活动、静坐时间的成分方差矩阵"

Items Professional population Nonprofessional population
MVPA LIPA SB MVPA LIPA SB
MVPA 0 1.204 1.437 0 0.801 0.941
LIPA 1.204 0 1.043 0.801 0 0.828
SB 1.437 1.043 0 0.941 0.828 0

表3

肥胖与身体活动、静坐的时间分布的成分线性回归分析"

Items Professional population Nonprofessional population
BMI -lnWHtR BMI -lnWHtR
β P β P β P β P
MVPA -0.084 0.255 -0.008 0.022 -0.079 0.041 -0.002 0.630
LIPA -0.033 0.685 0.004 0.201 -0.096 0.515 -0.004 0.934
SB 0.117 0.003 0.007 0.005 -0.017 0.904 0.003 0.473

表4

身体活动、静坐时间重新分配的BMI、WHtR预测值变化"

Items BMI -lnWHtR
MVPA LIPA SB MVPA LIPA SB
Professional population
MVPA 0.446 0.445 0.017 0.017
LIPA -0.464 0.455 -0.019 0.017
SB -0.462 -0.456 -0.018 -0.015
Nonprofessional population
MVPA 0.483 0.484 0.019 0.020
LIPA -0.487 0.486 -0.020 0.019
SB -0.485 -0.483 -0.021 -0.018
[1] Reis J, Loria C, Lewis C, et al. Association between duration of overall and abdominal obesity beginning in young[J]. JAMA, 2013,310(3):280-288.
pmid: 23860986
[2] Collaboration NRF. Trends in adult body-mass index in 200 countries from 1975 to 2014: a pooled analysis of 1698 population-based measurement studies with 19.2 million participants[J]. Lancet, 2016,387(10026):1377-1396.
pmid: 27115820
[3] 李方波, 李英华, 孙思伟, 等. 我国5省市18~60岁城乡居民超重肥胖现状调查及影响因素分析[J]. 中国健康教育, 2012,28(5):367-371.
[4] 宋孟娜, 程潇, 孔静霞, 等. 我国中老年人超重、肥胖变化情况及影响因素分析[J]. 中华疾病控制杂志, 2018,22(8):804-808.
[5] 王茹, 曹乾, 辛怡, 等. 中国成年人中心性肥胖患病情况及其影响因素分析[J]. 中国公共卫生, 2019,35(1):1-4.
[6] 陶秀娟, 杨建军, 范彦娜, 等. 零食、体力活动和静坐行为与超重、肥胖及社会人口学特征的相关性研究[J]. 中国妇幼保健, 2019,34(11):2579-2582.
[7] 符茂真, 吴琦欣, 年云鹏, 等. 休闲性身体活动水平与超重肥胖的关联分析[J]. 中国慢性病预防与控制, 2018,26(7):504-508.
[8] Chastin SF, Palarea-Albaladejo J, Dontje ML, et al. Combined effects of time spent in physical activity, sedentary behaviors and sleep on obesity and cardio-metabolic health markers: A novel compositional data analysis approach[J]. PLoS One, 2015,10(10):e0139984.
[9] Pedišić Ž. Measurement issues and poor adjustments for physical activity and sleep undermine sedentary behaviour research—the focus should shift to the balance between sleep, sedentary beha-viour, standing and activity[J]. Kinesiology, 2014,46(1):135-146.
[10] Dumuid D, Stanford TE, Martin-Fernandez JA, et al. Compositional data analysis for physical activity, sedentary time and sleep research[J]. Stat Methods Med Res, 2018,27(12):3726-3738.
[11] Tremblay MS, Carson V, Chaput JP, et al. Canadian 24-hour movement guidelines for children and youth: An integration of physical activity, sedentary behaviour, and sleep[J]. Appl Phy-siol Nutr Metab, 2016,41(6 Suppl 3):S311-327.
[12] IPAQ Group. International physical activity questionnaire [EB/OL]. [ 2020- 01- 26]. http://www.ipaq.ki.se/downloads.html.
[13] 樊萌语, 吕筠, 何平平. 国际体力活动问卷中体力活动水平的计算方法[J]. 中华流行病学杂志, 2014,35(8):961-964.
[14] Deng HB, Macfarlane DJ, Thomas GN, et al. Reliability and validity of the IPAQ-Chinese: the Guangzhou Biobank Cohort study[J]. Med Sci Sports Exerc, 2008,40(2):303-307.
doi: 10.1249/mss.0b013e31815b0db5 pmid: 18202571
[15] 贾玉俭, 许良智, 康德英, 等. 国际体力活动问卷 (自填式长卷) 中文版在成都市女性人群中信度与效度的研究[J]. 中华流行病学杂志, 2008,29(11):1078-1082.
[16] 高键, 费嘉庆, 姜立经, 等. 应用于膳食模式研究的简化膳食频率问卷信度和效度评价[J]. 营养学报, 2011,33(5):452-456.
[17] 中华人民共和国卫生部疾病预防控制局. 中国成人身体活动指南(节录)[J]. 营养学报, 2012,34(2):105-110.
[18] 艾奇逊. 成分数据的统计分析 [M]. 武汉: 中国地质大学出版社, 1990: 3-110.
[19] Pearson K. Mathematical contributions to the theory of evolution. On a form of spurious correlation which may arise when indices are used in the measurement of organs [J]. Procroysoc, 1897,60(1):489-498.
[20] Pawlowsky-Glahn V, Egozcue JJ, Tolosana-Delgado R. Modelling and analysis of compositional data[M]. Hoboken, NJ, USA: John Wiley & Sons, Ltd, 2015: 33-34.
[21] Pelclova J, Stefelova N, Hodonska J, et al. Reallocating time from sedentary behavior to light and moderate-to-vigorous physical acti-vity: What has a stronger association with adiposity in older adult women?[J]. Int J Environ Res Public Health, 2018,15(7):1444-1454.
[22] Egozcue JJ, Pawlowsky-Glahn V, Mateu-Figueras G, et al. Isometric logratio transformations for compositional data analysis[J]. Math Geol, 2003,35(3):279-300.
[23] Fairclough SJ, Dumuid D, Taylor S, et al. Fitness, fatness and the reallocation of time between children’s daily movement beha-viours: an analysis of compositional data[J]. Int J Behav Nutr Phys Act, 2017,14(1):64-76.
[1] 陈敬,单蕊,肖伍才,张晓蕊,刘峥. 青春期和成年早期自制力与抑郁症状和超重肥胖共病风险的关联:基于全国调查的十年前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 397-402.
[2] 蔡珊,张依航,陈子玥,刘云飞,党佳佳,师嫡,李佳欣,黄天彧,马军,宋逸. 北京市中小学生身体活动时间现状及影响因素的路径[J]. 北京大学学报(医学版), 2024, 56(3): 403-410.
[3] 吴一凡,玉应香,谢岚,张志达,常翠青. 不同体重指数青年男性的静息能量消耗特点及预测方程评价[J]. 北京大学学报(医学版), 2024, 56(2): 247-252.
[4] 陈楚云,孙蓬飞,赵静,贾佳,范芳芳,王春燕,李建平,姜一梦,霍勇,张岩. 北京社区人群促红细胞生成素相关因素及其与10年心血管疾病风险的关系[J]. 北京大学学报(医学版), 2023, 55(6): 1068-1073.
[5] 党佳佳,蔡珊,钟盼亮,王雅琪,刘云飞,师嫡,陈子玥,张依航,胡佩瑾,李晶,马军,宋逸. 室外夜间人工光暴露与中国9~18岁儿童青少年超重肥胖的关联[J]. 北京大学学报(医学版), 2023, 55(3): 421-428.
[6] 陈敬,肖伍才,单蕊,宋洁云,刘峥. DRD2基因rs2587552多态性对儿童肥胖干预效果的影响:一项前瞻性、平行对照试验[J]. 北京大学学报(医学版), 2023, 55(3): 436-441.
[7] 马涛,李艳辉,陈曼曼,马莹,高迪,陈力,马奇,张奕,刘婕妤,王鑫鑫,董彦会,马军. 青春期启动提前与儿童肥胖类型的关联研究: 基于横断面调查和队列调查[J]. 北京大学学报(医学版), 2022, 54(5): 961-970.
[8] 朱忆颖,闵赛南,俞光岩. 局部注射环孢素A对非肥胖糖尿病小鼠下颌下腺分泌功能及炎症的影响[J]. 北京大学学报(医学版), 2021, 53(4): 750-757.
[9] 张晓圆,郭成成,玉应香,谢岚,常翠青. 高脂饲料诱导肥胖胰岛素抵抗大鼠模型的建立[J]. 北京大学学报(医学版), 2020, 52(3): 557-563.
[10] 郭成成,张晓圆,玉应香,谢岚,常翠青. 绿原酸对高脂饲料诱导的肥胖大鼠糖耐量及其曲线特征的影响[J]. 北京大学学报(医学版), 2020, 52(2): 269-274.
[11] 吴士艳,张旭熙,孙凯歌,胡康,刘思佳,孙昕霙. 慢性病高危人群和健康人群休闲类身体活动健康信念模式的多组结构方程模型分析[J]. 北京大学学报(医学版), 2018, 50(4): 711-716.
[12] 董彦会,宋逸,董彬,邹志勇,王政和,杨招庚,王西婕,李艳辉,马军. 2014年中国7~18岁学生血压状况与营养状况的关联分析——基于中国儿童青少年血压评价标准[J]. 北京大学学报(医学版), 2018, 50(3): 422-428.
[13] 吴宇佳,迟晓培,陈峰,邓旭亮. 肥胖者唾液微生物宏基因组学特点[J]. 北京大学学报(医学版), 2018, 50(1): 5-12.
[14] 杜依青,刘慧鑫,刘春雷,顿耀军,李清,于路平,刘士军,陈黎黎,王晓峰,徐涛. 代谢相关因素与肾细胞癌分级、分期的相关研究[J]. 北京大学学报(医学版), 2016, 48(4): 612-617.
[15] 程兰,李钦,宋逸,马军,王海俊. 中国9~11岁小学生体育锻炼、静态行为和#br# 超重与肥胖的关系[J]. 北京大学学报(医学版), 2016, 48(3): 436-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!