北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (1): 16-23. doi: 10.19723/j.issn.1671-167X.2021.01.004

• 论著 • 上一篇    下一篇

广泛型侵袭性牙周炎患者牙根形态异常与相关致病基因的关联

刘建,王宪娥,吕达,乔敏,张立,孟焕新(),徐莉(),毛铭馨   

  1. 北京大学口腔医学院·口腔医院,牙周科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2020-09-29 出版日期:2021-02-18 发布日期:2021-02-07
  • 通讯作者: 孟焕新,徐莉 E-mail:kqmeng@126.com;xulihome@263.net

Association between root abnormalities and related pathogenic genes in patients with generalized aggressive periodontitis

LIU Jian,WANG Xian-e,LV Da,QIAO Min,ZHANG Li,MENG Huan-xin(),XU Li(),MAO Ming-xin   

  1. Department of Periodontology,Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2020-09-29 Online:2021-02-18 Published:2021-02-07
  • Contact: Huan-xin MENG,Li XU E-mail:kqmeng@126.com;xulihome@263.net

摘要:

目的: 探索广泛型侵袭性牙周炎(generalized aggressive periodontitis,GAgP)患者牙根形态异常与骨代谢或牙根发育相关基因多态性的关联。方法: 纳入179例GAgP患者,平均(27.23±5.19)岁,男 ∶女=67 ∶112,平均存留牙数(26.80±1.84)颗。采用基于基质辅助激光解吸电离飞行时间质谱技术进行 9个与骨代谢和牙根发育相关基因的13个单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)的基因型检测。采用全口根尖片评判牙根形态异常,包括锥根、细长根、冠根比例失调、弯曲根、融合根、后牙根形态异常,分析13个SNPs位点不同基因型根形态异常牙的数量及发生率。结果: GAgP患者根形态异常牙构成比为14.49%(695/4 798颗),平均(3.88±3.84)颗。维生素D受体(vitamin D receptor,VDR)基因rs2228570位点的CC、CT、TT基因型患者根形态异常牙数量分别为(4.66±4.10)、(3.71±3.93)和(2.68±2.68)颗,CC基因型和TT基因型之间差异有统计学意义(t=2.62,P=0.01)。降钙素受体(calcitotin receptor,CTR)基因rs2283002位点CC、CT、TT基因型患者根形态异常数分别为(5.02±3.70)、(3.43±3.95)、(3.05±3.12)颗,CC基因型的根形态异常发病率高于CT和TT基因型(87.86% vs. 65.26%和63.64%,P=0.006,adjusted OR=3.71,95%CI:1.45~9.50)。结论: VDR rs2228570及CTR rs2283002位点可能与广泛型侵袭性牙周炎患者牙根形态异常的发生有关,值得进一步研究。

关键词: 侵袭性牙周炎, 牙根形态异常, 基因, 单核苷酸多态性

Abstract:

Objective: To explore the association between the abnormal root morphology and bone metabolism or root development related gene polymorphism in patients with generalized aggressive periodontitis.Methods: In the study, 179 patients with generalized aggressive periodontitis were enrolled, with an average age of (27.23±5.19) years, male / female = 67/112. The average number of teeth remaining in the mouth was (26.80±1.84). Thirteen single nucleotide polymorphisms (SNPs) of nine genes which related to bone metabolism and root development were detected by matrix assisted laser desorption ionization time of flight mass spectrometry (MALDI-TOF-MS). Root abnormalities were identified using periapical radiographs. The abnormal root morphology included cone-rooted teeth,slender-root teeth,short-rooted teeth,curved-rooted teeth,syncretic-rooted molars,and molar root abnormalities. The number of teeth and incidence of abnormal root morphology in different genotypes of 13 SNPs were analyzed.Results: The constituent ratio of root with root abnormality in GAgP patients was 14.49%(695/4 798). The average number of teeth with abnormal root morphology in GAgP was (3.88±3.84). The average number of teeth with abnormal root morphology in CC, CT and TT genotypes in vitamin D receptor (VDR) rs2228570 was (4.66±4.10), (3.71±3.93) and (2.68±2.68). There was significant difference between TT genotype and CC genotype (t = 2.62, P =0.01). The average number of root morphological abnormalities in CC, CT and TT genotypes of Calcitotin Receptor (CTR) gene rs2283002 was (5.02±3.70),(3.43±3.95), and (3.05±3.12). The incidence of root morphological abnormalities in CC genotype was higher than that in the patients with CT and TT, and the difference was statistically significant(87.86% vs. 65.26% & 63.64%, P=0.006,adjusted OR =3.71,95%CI: 1.45-9.50). There was no significant difference in the incidence of abnormal root morphology between CT and TT genotypes.Conclusion: VDR rs2228570 and CTR rs2283002 may be associated with the occurrence of abnormal root morphology in patients with generalized aggressive periodontitis, which is worthy of further research.

Key words: Aggressive periodontitis, Root abnormality, Gene, Single nucleotide polymorphisms

中图分类号: 

  • R394.3

表1

纳入研究的9个基因及13个SNPs位点"

Gene SNPs
VDR rs2228570
CTR rs2283002, rs2374634
MMP-8 rs11225395
RANK rs11664594
DBP rs17467825, rs4588, rs7041
EGF rs2237051
BMP2 rs2273073
S100A8 rs3795391, rs3806232
Runx2/Cbfa1 rs6938177

图1

牙根形态异常典型X线片"

表2

牙根形态异常牙的分布状况"

Item Teeth level, n (%)
Cone-rooted teeth of anterior 214 (31)
Cone-rooted teeth of premolar 160 (23)
Short-rooted teeth 106 (15)
Curved-rooted teeth 85 (12)
Slender-root teeth 53 (8)
Molar root abnormalities 39 (6)
Syncretic-rooted molars 37 (5)
Root abnormalities 695 (100)

表3

GAgP患者9个基因13个SNPs位点不同基因型与牙根形态异常"

SNPs Gene type GAgP, n(%) Cone-rooted teeth of anterior Teeth of root abnormalities
Median(P25, P75) P x-±s/Median(P25, P75) P
VDR rs2228570 CC 59 (33.91) 0 (0, 2) 4.66±4.10
CT 90 (51.72) 0 (0, 2) 0.02 3.71±3.93 0.01
TT 25 (14.37) 0 (0, 0) 2.68±2.68
CTR rs2283002 TT 22 (13.25) 0 (0, 1.25) 3.05±3.12
CT 95 (57.23) 0 (0, 2) 0.14 3.43±3.95 0.03
CC 49 (29.52) 0 (0, 2.50) 5.02±3.70
CTR rs2374634 TT 144 (83.72) 0 (0, 2) 3 (0, 6.75)
TC 25 (14.53) 0 (0, 1) 0.44 4 (0, 5) 0.75
CC 3 (1.74) 0 (0, 1) 6 (0, 7)
MMP-8 rs11225395 GG 73 (41.01) 0 (0, 2) 4.25±3.95
AG 88 (49.44) 0 (0, 1) 0.23 3.48±3.70 0.38
AA 17 (9.55) 0 (0, 3) 4.41±4.18
RANK rs11664594 TT 59 (34.30) 0 (0, 2) 4.17±4.26
AT 87 (50.58) 0 (0, 2) 0.80 4.18±3.80 0.21
AA 26 (15.12) 0 (0, 2) 2.73±2.86
DBP rs17467825 AA 77 (44.77) 0 (0, 2) 3.84±3.79
AG 73 (42.44) 0 (0, 2) 0.72 3.67±3.62 0.45
GG 22 (12.79) 0 (0, 2.50) 4.86±4.95
DBP rs4588 CC 76 (43.18) 0 (0, 2) 3 (0.25, 6)
CA 79 (44.89) 0 (0, 2) 0.51 4 (0, 6) 0.93
AA 21 (11.93) 0 (0, 3) 2 (0, 8.50)
DBP rs7041 TT 97 (55.43) 0 (0, 2) 3.84±3.60
GT 68 (38.86) 0 (0, 2) 0.39 3.99±4.23 0.75
GG 10 (5.71) 1.5 (0, 2.50) 4.80±3.82
EGF rs2237051 AA 73 (41.71) 0 (0, 1) 3.89±4.06
GA 90 (51.43) 0 (0, 2) 0.12 4.01±3.67 0.98
GG 12 (6.86) 0 (0, 2) 3.83±4.28
BMP2 rs2273073 TT 156 (90.17) 0 (0, 2) 0.81 3.96±3.83 0.97
GT 17 (9.83) 0 (0, 2) 4.00±4.26
GG - - - - -
S100A8 rs3795391 TT 136 (77.27) 0 (0, 2) 0.76 3.91±3.98 0.99
TC 40 (22.73) 0 (0, 2) 3.90±3.46
CC - - - - -
S100A8 rs3806232 TT 130 (73.03) 0 (0, 2) 0.41 3.79±4.00 0.63
CT 48 (26.97) 0 (0, 2) 4.10±3.47
CC - - - - -
Runx2/Cbfa1 CC 87 (49.71) 0 (0, 2) 3.44±3.73
rs6938177 TC 71 (40.57) 0 (0, 3) 0.01 4.65±4.03 0.041
TT 17 (9.71) 0 (0, 0.50) 2.47±2.62

表4

GAgP患者9个基因13个SNPs位点不同基因型根形态异常发生率"

SNPs Gene type Total Incidence of root abnormality
n(%) Adjusted OR(95%CI)
VDR rs2228570
CC 59 45 (76.27)
CT+TT 115 79 (68.70) 0.93 (0.56, 1.52)
CTR rs2283002
CC 49 43 (87.76) 3.71 (1.45, 9.50)*
CT+TT 117 76 (64.96)
CTR rs2374634
TT 144 105 (72.92)
TC+CC 28 19 (67.86) 1.28 (0.53, 3.06)
MMP-8 rs11225395
AA 17 12 (70.59)
GG+AG 161 115 (71.42) 1.04 (0.35, 3.12)
RANK rs11664594
TT 59 46 (77.93)
AT+AA 113 75 (66.37) 1.79 (0.87, 3.72)
DBP rs17467825
GG 22 16 (72.37)
AA+AG 150 107 (71.33) 0.93 (0.34, 2.54)
DBP rs4588
AA 21 15 (71.43)
CA+CC 155 79 (72.26) 1.04 (0.38, 2.86)
DBP rs7041
TT 97 73 (7526)
GT+GG 78 54 (69.23) 1.35 (0.69, 2.63)
EGF rs2237051
AA 73 48 (65.75)
GA+GG 102 79 (77.45) 0.56 (0.29, 1.09)
BMP2 rs2273073
TT 156 114 (73.08)
GT 17 12 (70.59) 1.13 (0.38, 3.40)
S100A8 rs3795391
TT 136 96 (70.59)
TC 40 30 (75.00) 0.80 (0.36, 1.79)
S100A8 rs3806232
TT 130 89 (68.46)
CT 48 38 (79.17) 0.57 (0.26, 1.26)
Runx2/Cbfa1 rs6938177 CC 87 60 (68.97)
TC+TT 88 79 (73.86) 0.79 (0.41, 1.52)

图2

VDR rs2228570 CC基因型患者根尖片"

[1] Stabholz A, Soskolne WA, Shapira L. Genetic and environmental risk factors for chronic periodontitis and aggressive periodontitis[J]. Periodontology, 2010,53(1):138-153.
[2] Park KS, Nam JH, Choi J. The short vitamin D receptor is associated with increased risk for generalized aggressive periodontitis[J]. J Clin Periodontol, 2006,33(8):524-528.
doi: 10.1111/j.1600-051X.2006.00944.x pmid: 16899094
[3] Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
doi: 10.1111/j.1600-0765.2007.01044.x pmid: 18205735
[4] McNamara CM, Garvey MT, Winter GB. Root abnormalities, talon cusps, dens invaginati with reduced alveolar bone levels: case report[J]. Int J Paediatr Dent, 1998,8(1):41-45.
doi: 10.1046/j.1365-263x.1998.00060.x pmid: 9558545
[5] 梁鑫. 人类牙根发育异常疾病概述[J]. 中华口腔医学杂志, 2019,54(11):783-787.
[6] 徐莉, 孟焕新, 田雨, 等. 侵袭性牙周炎患者牙根形态异常的观察[J]. 中华口腔医学杂志, 2009,44(5):266-269.
[7] 乔敏, 徐莉, 孟焕新, 等. 侵袭性牙周炎核心家系牙槽骨吸收和牙根形态的遗传度分析[J]. 中华口腔医学杂志, 2013,48(10):577-580.
[8] 孟焕新, 曹采方, 和璐, 等. 临床牙周病学[M].2版. 北京: 北京大学医学出版社, 2014: 95-99.
[9] Puthiyaveetil JSV, Kota K, Chakkarayan R, et al. Epithelial mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: a review[J]. J Clin Diagn Res, 2016,10(9):5-9.
[10] Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development[J]. Int J Oral Sci, 2012,4(4):177-181.
doi: 10.1038/ijos.2012.61 pmid: 23222990
[11] Li JY, Parada G, Yang G. Cellular and molecular mechanisms of tooth root development[J]. Development, 2017,144(3):374-384.
doi: 10.1242/dev.137216 pmid: 28143844
[12] Jia SH, Edward KHJ, Lan Y, et al. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists[J]. Developmental Biology, 2016,420(1):110-119.
pmid: 27713059
[13] Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4[J]. Development, 1996,122(1):121-129.
pmid: 8565823
[14] Guo T, Cao G, Liu BY, et al. Cbfα1 hinders autophagy by DSPP upregulation in odontoblast differentiation[J]. Int J Biochem Cell Biol, 2019,115(10):78-89.
[15] Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal[J]. Curr Top Dev Biol, 2015,115:157-186.
doi: 10.1016/bs.ctdb.2015.07.006 pmid: 26589925
[16] Hanna AE, Sanjad S, Andary R, et al. Tooth development associated with mutations in hereditary vitamin D-resistant rickets[J]. Clin Trans Res, 2018,3(1):28-34.
[17] Mallek HM, Nakamoto T, Nuchtern E, et al. The effect of calcitonin in vitro on tooth germs in protein-energy malnourished rats[J]. J Dent Res, 1979,58(9):1921-1925.
doi: 10.1177/00220345790580091901 pmid: 114562
[18] Sakakura Y, Iida S, Ishizeki K, et al. Ultrastructure of the effects of calcitonin on the development of mouse tooth germs in vitro[J]. Arch Oral Biol, 1984,29(7):507-512.
doi: 10.1016/0003-9969(84)90071-2 pmid: 6591883
[19] 张瑞, 黄晓峰, 张方明, 等. Nfic在牙根发育中作用的研究[J]. 北京口腔医学, 2013,21(3):121-124.
[20] Steele-Perkins G, Butz KG, Lyons GE, et al. Essential role for NFI-C/CTF transcription-replication factor in tooth root development.[J]. Mol Cell Biol, 2003,23(3):1075-1084.
doi: 10.1128/mcb.23.3.1075-1084.2003 pmid: 12529411
[21] Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts[J]. Bone, 2018,114:161-171.
doi: 10.1016/j.bone.2017.12.026 pmid: 29292230
[22] Zhang R, Yang G, Wu X, et al. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth[J]. Int J Biol Sci, 2013,9(3):228-236.
doi: 10.7150/ijbs.5476 pmid: 23494738
[23] Chen HM, Guo SY, Xia Y, et al. The role of Rho-GEF Trio in regulating tooth root development through the p38 MAPK pathway[J]. Exp Cell Res, 2018,372(2):158-167.
pmid: 30268758
[24] 张宇凝, 王骏周, 陈晨. 牙根发育调控机制的研究进展[J]. 中华口腔医学杂志, 2020,55(8):591-594.
[25] LV D, Meng HX, Xu L, et al. Root abnormalities and nonsurgical management of generalized, aggressive periodontitis[J]. J Oral Sci, 2017,59(1):1-8.
doi: 10.2334/josnusd.16-0027 pmid: 27725369
[26] 田雨, 徐莉, 孟焕新, 等. 单根牙牙根表面积的测量与估算[J]. 北京大学学报(医学版), 2009,44(1):32-35.
[27] Berdal A, Hotton D, Pike JW, et al. Cell- and stage-specific expression of vitamin D receptor and calbindin genes in rat incisor: regulation by 1,25-dihydroxyvitamin D3[J]. Dev Biol, 1993,155(1):172-179.
doi: 10.1006/dbio.1993.1016 pmid: 8380146
[28] Papagerakis P. Differential epithelial and mesenchymal regulation of tooth-specific matrix protein sexpression by 1, 25-dihydroxyvitamin D3 in vivo[J]. Connect Tissue Res, 2002,43(2/3):372-375.
[29] Onishi T. Relationship of vitamin D with calbindin D9k and D28k expression in ameloblasts.[J]. Arch Oral Biol, 2008,53(2):117-123.
doi: 10.1016/j.archoralbio.2007.09.009 pmid: 17981260
[30] Bailleul-Forestier I, Davideau JL, Papagerakis P, et al. Immunolocalization of vitamin D receptor and calbindin-D28k in human tooth germ[J]. Pediatr Res, 1996,39(4):636-642.
[31] Botelho J, Machado V, Proença L, et al. Vitamin D deficiency and oral health: a comprehensive review[J]. Nutrients, 2020,12(5):1471-1487.
[32] 李媛媛, 崔凌凌, 李鑫, 等. 中国汉族男性原发性痛风与维生素D受体基因rs2228570多态性的遗传易感性研究[J]. 中华内分泌代谢杂志, 2015,31(4):316-319.
[33] Gross C, Eccleshall TR, Malloy PJ, et al. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women[J]. J Bone Miner Res, 1996,11(12):1850-1855.
doi: 10.1002/jbmr.5650111204 pmid: 8970885
[34] Gross C, Krishnan AV, Malloy PJ, et al. The vitamin D receptor gene start codon polymorphism: A functional analysis of FokI variants[J]. J Bone Miner Res, 1998,13(11):1691-1699.
doi: 10.1359/jbmr.1998.13.11.1691 pmid: 9797477
[35] Egan JB, Thompson PA, Vitanov MV, et al. Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells[J]. Mol Carcinogen, 2010,49(4):337-352.
[36] Alimirah F, Peng XJ, Murillo G, et al. Functional significance of vitamin D receptor FokI polymorphismin human breast cancer cells[J]. PLoS One, 2011,6(1):e16024.
doi: 10.1371/journal.pone.0016024 pmid: 21283672
[37] Liu K, Han B, Meng HX, et al. Influence of rs2228570 on transcriptional activation by the vitamin D receptor in human gingival fibroblasts and periodontal ligament cells[J]. J Clin Periodontol, 2017,88(9):1-19.
[38] Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
doi: 10.1111/j.1600-0765.2007.01044.x pmid: 18205735
[39] Xiong DH, Shen H, Zhao LJ, et al. Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction[J]. J Bone Miner Res, 2006,21(11):1678-1695.
doi: 10.1359/jbmr.060808 pmid: 17002564
[40] Lawrence AW, Mary EF, Zheng YX, et al. In vitro characterization of a human calcitonin receptor gene polymorphism[J]. Mutat Res Fund Mol M, 2003,522(1/2):93-105.
doi: 10.1016/S0027-5107(02)00282-8
[41] Giroux S, Elfassihi L, Clément V, et al. High-density polymorphisms analysis of 23 candidate genes for association with bone mineral density[J]. Bone, 2010,47(5):975-981.
doi: 10.1016/j.bone.2010.06.030
[42] Yanovich R, Friedman E, Milgrom R, et al. Candidate gene ana-lysis in israeli soldiers with stress fractures[J]. J Sports Sci Med, 2012,11(1):147-155.
pmid: 24149131
[1] 朱小玲,李文静,王宪娥,宋文莉,徐莉,张立,冯向辉,路瑞芳,释栋,孟焕新. 细胞色素B-245α链及胆固醇酯转运蛋白基因多态性与广泛型侵袭性牙周炎易感性的关系[J]. 北京大学学报(医学版), 2022, 54(1): 18-22.
[2] 刘梅歌,方朴,王严,丛璐,范洋溢,袁远,徐燕,张俊,洪道俊. 远端型遗传性运动神经病8例的临床、病理及遗传学特点[J]. 北京大学学报(医学版), 2021, 53(5): 957-963.
[3] 张梅香,史文芝,刘建新,王春键,李燕,王蔚,江滨. MLL-AF6融合基因阳性急性髓系白血病的临床特征及预后[J]. 北京大学学报(医学版), 2021, 53(5): 915-920.
[4] 冯科,倪菁菁,夏彦清,曲晓伟,张慧娟,万锋,洪锴,张翠莲,郭海彬. 3例SUN5基因变异导致无头精子症的遗传学分析和助孕治疗结局[J]. 北京大学学报(医学版), 2021, 53(4): 803-807.
[5] 郭子宁, 梁志生, 周仪, 张娜, 黄捷. 基于国际疾病分类的心血管疾病亚型的基因组学研究[J]. 北京大学学报(医学版), 2021, 53(3): 453-459.
[6] 周川, 马雪, 邢云昆, 李璐迪, 陈洁, 姚碧云, 傅娟玲, 赵鹏. 基于肿瘤基因组图谱数据库探索性筛选潜在泛癌生物标志物[J]. 北京大学学报(医学版), 2021, 53(3): 602-607.
[7] 赵凯,常志芳,王志华,庞春艳,王永福. 基因沉默肽基精氨酸脱亚胺酶4的表达对胶原诱导关节炎小鼠肺间质病变的影响[J]. 北京大学学报(医学版), 2021, 53(2): 235-239.
[8] 吴君怡,余淼,孙仕晨,樊壮壮,郑静蕾,张刘陶,冯海兰,刘洋,韩冬. 少汗性外胚层发育不良患者EDA基因突变检测及表型分析[J]. 北京大学学报(医学版), 2021, 53(1): 24-33.
[9] 高鹏,雒艳萍,李俊峰. B/C基因型的乙型肝炎病毒对不同免疫阶段慢性乙型肝炎患者T淋巴细胞及其亚群的影响[J]. 北京大学学报(医学版), 2020, 52(6): 1153-1156.
[10] 刘滕飞,林涛,任利辉,李广平,彭建军. CMTM5基因与冠状动脉粥样硬化性心脏病的关联研究及机制探讨[J]. 北京大学学报(医学版), 2020, 52(6): 1082-1087.
[11] 李文咏,王梦莹,周仁,王斯悦,郑鸿尘,朱洪平,周治波,吴涛,王红,石冰. 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020, 52(5): 809-814.
[12] 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,李静,李楠,周治波,朱洪平,吴涛,胡永华. WNT代谢通路相关基因与中国人群非综合征型唇腭裂发病风险的交互作用[J]. 北京大学学报(医学版), 2020, 52(5): 815-820.
[13] 柳小珍,李莹莹,杨丽萍. 全外显子组测序和目标序列靶向捕获测序在遗传性视网膜变性基因诊断中的差异[J]. 北京大学学报(医学版), 2020, 52(5): 836-844.
[14] 胡双,杨丽萍. 不同血清型腺相关病毒载体转染小鼠视网膜后的表达效率[J]. 北京大学学报(医学版), 2020, 52(5): 845-850.
[15] 鲍轶,莫娟芬. 同时性多原发肺腺癌组织编码转录因子ERG基因相同位点突变1例报告[J]. 北京大学学报(医学版), 2020, 52(5): 971-974.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .