北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (1): 16-23. doi: 10.19723/j.issn.1671-167X.2021.01.004
刘建,王宪娥,吕达,乔敏,张立,孟焕新(),徐莉(),毛铭馨
LIU Jian,WANG Xian-e,LV Da,QIAO Min,ZHANG Li,MENG Huan-xin(),XU Li(),MAO Ming-xin
摘要:
目的: 探索广泛型侵袭性牙周炎(generalized aggressive periodontitis,GAgP)患者牙根形态异常与骨代谢或牙根发育相关基因多态性的关联。方法: 纳入179例GAgP患者,平均(27.23±5.19)岁,男 ∶女=67 ∶112,平均存留牙数(26.80±1.84)颗。采用基于基质辅助激光解吸电离飞行时间质谱技术进行 9个与骨代谢和牙根发育相关基因的13个单核苷酸多态性位点(single nucleotide polymorphisms,SNPs)的基因型检测。采用全口根尖片评判牙根形态异常,包括锥根、细长根、冠根比例失调、弯曲根、融合根、后牙根形态异常,分析13个SNPs位点不同基因型根形态异常牙的数量及发生率。结果: GAgP患者根形态异常牙构成比为14.49%(695/4 798颗),平均(3.88±3.84)颗。维生素D受体(vitamin D receptor,VDR)基因rs2228570位点的CC、CT、TT基因型患者根形态异常牙数量分别为(4.66±4.10)、(3.71±3.93)和(2.68±2.68)颗,CC基因型和TT基因型之间差异有统计学意义(t=2.62,P=0.01)。降钙素受体(calcitotin receptor,CTR)基因rs2283002位点CC、CT、TT基因型患者根形态异常数分别为(5.02±3.70)、(3.43±3.95)、(3.05±3.12)颗,CC基因型的根形态异常发病率高于CT和TT基因型(87.86% vs. 65.26%和63.64%,P=0.006,adjusted OR=3.71,95%CI:1.45~9.50)。结论: VDR rs2228570及CTR rs2283002位点可能与广泛型侵袭性牙周炎患者牙根形态异常的发生有关,值得进一步研究。
中图分类号:
[1] | Stabholz A, Soskolne WA, Shapira L. Genetic and environmental risk factors for chronic periodontitis and aggressive periodontitis[J]. Periodontology, 2010,53(1):138-153. |
[2] |
Park KS, Nam JH, Choi J. The short vitamin D receptor is associated with increased risk for generalized aggressive periodontitis[J]. J Clin Periodontol, 2006,33(8):524-528.
doi: 10.1111/j.1600-051X.2006.00944.x pmid: 16899094 |
[3] |
Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
doi: 10.1111/j.1600-0765.2007.01044.x pmid: 18205735 |
[4] |
McNamara CM, Garvey MT, Winter GB. Root abnormalities, talon cusps, dens invaginati with reduced alveolar bone levels: case report[J]. Int J Paediatr Dent, 1998,8(1):41-45.
doi: 10.1046/j.1365-263x.1998.00060.x pmid: 9558545 |
[5] | 梁鑫. 人类牙根发育异常疾病概述[J]. 中华口腔医学杂志, 2019,54(11):783-787. |
[6] | 徐莉, 孟焕新, 田雨, 等. 侵袭性牙周炎患者牙根形态异常的观察[J]. 中华口腔医学杂志, 2009,44(5):266-269. |
[7] | 乔敏, 徐莉, 孟焕新, 等. 侵袭性牙周炎核心家系牙槽骨吸收和牙根形态的遗传度分析[J]. 中华口腔医学杂志, 2013,48(10):577-580. |
[8] | 孟焕新, 曹采方, 和璐, 等. 临床牙周病学[M].2版. 北京: 北京大学医学出版社, 2014: 95-99. |
[9] | Puthiyaveetil JSV, Kota K, Chakkarayan R, et al. Epithelial mesenchymal interactions in tooth development and the significant role of growth factors and genes with emphasis on mesenchyme: a review[J]. J Clin Diagn Res, 2016,10(9):5-9. |
[10] |
Huang XF, Chai Y. Molecular regulatory mechanism of tooth root development[J]. Int J Oral Sci, 2012,4(4):177-181.
doi: 10.1038/ijos.2012.61 pmid: 23222990 |
[11] |
Li JY, Parada G, Yang G. Cellular and molecular mechanisms of tooth root development[J]. Development, 2017,144(3):374-384.
doi: 10.1242/dev.137216 pmid: 28143844 |
[12] |
Jia SH, Edward KHJ, Lan Y, et al. Bmp4-Msx1 signaling and Osr2 control tooth organogenesis through antagonistic regulation of secreted Wnt antagonists[J]. Developmental Biology, 2016,420(1):110-119.
pmid: 27713059 |
[13] |
Vaahtokari A, Aberg T, Thesleff I. Apoptosis in the developing tooth: association with an embryonic signaling center and suppression by EGF and FGF-4[J]. Development, 1996,122(1):121-129.
pmid: 8565823 |
[14] | Guo T, Cao G, Liu BY, et al. Cbfα1 hinders autophagy by DSPP upregulation in odontoblast differentiation[J]. Int J Biochem Cell Biol, 2019,115(10):78-89. |
[15] |
Balic A, Thesleff I. Tissue interactions regulating tooth development and renewal[J]. Curr Top Dev Biol, 2015,115:157-186.
doi: 10.1016/bs.ctdb.2015.07.006 pmid: 26589925 |
[16] | Hanna AE, Sanjad S, Andary R, et al. Tooth development associated with mutations in hereditary vitamin D-resistant rickets[J]. Clin Trans Res, 2018,3(1):28-34. |
[17] |
Mallek HM, Nakamoto T, Nuchtern E, et al. The effect of calcitonin in vitro on tooth germs in protein-energy malnourished rats[J]. J Dent Res, 1979,58(9):1921-1925.
doi: 10.1177/00220345790580091901 pmid: 114562 |
[18] |
Sakakura Y, Iida S, Ishizeki K, et al. Ultrastructure of the effects of calcitonin on the development of mouse tooth germs in vitro[J]. Arch Oral Biol, 1984,29(7):507-512.
doi: 10.1016/0003-9969(84)90071-2 pmid: 6591883 |
[19] | 张瑞, 黄晓峰, 张方明, 等. Nfic在牙根发育中作用的研究[J]. 北京口腔医学, 2013,21(3):121-124. |
[20] |
Steele-Perkins G, Butz KG, Lyons GE, et al. Essential role for NFI-C/CTF transcription-replication factor in tooth root development.[J]. Mol Cell Biol, 2003,23(3):1075-1084.
doi: 10.1128/mcb.23.3.1075-1084.2003 pmid: 12529411 |
[21] |
Huang H, Wang J, Zhang Y, et al. Bone resorption deficiency affects tooth root development in RANKL mutant mice due to attenuated IGF-1 signaling in radicular odontoblasts[J]. Bone, 2018,114:161-171.
doi: 10.1016/j.bone.2017.12.026 pmid: 29292230 |
[22] |
Zhang R, Yang G, Wu X, et al. Disruption of Wnt/β-catenin signaling in odontoblasts and cementoblasts arrests tooth root development in postnatal mouse teeth[J]. Int J Biol Sci, 2013,9(3):228-236.
doi: 10.7150/ijbs.5476 pmid: 23494738 |
[23] |
Chen HM, Guo SY, Xia Y, et al. The role of Rho-GEF Trio in regulating tooth root development through the p38 MAPK pathway[J]. Exp Cell Res, 2018,372(2):158-167.
pmid: 30268758 |
[24] | 张宇凝, 王骏周, 陈晨. 牙根发育调控机制的研究进展[J]. 中华口腔医学杂志, 2020,55(8):591-594. |
[25] |
LV D, Meng HX, Xu L, et al. Root abnormalities and nonsurgical management of generalized, aggressive periodontitis[J]. J Oral Sci, 2017,59(1):1-8.
doi: 10.2334/josnusd.16-0027 pmid: 27725369 |
[26] | 田雨, 徐莉, 孟焕新, 等. 单根牙牙根表面积的测量与估算[J]. 北京大学学报(医学版), 2009,44(1):32-35. |
[27] |
Berdal A, Hotton D, Pike JW, et al. Cell- and stage-specific expression of vitamin D receptor and calbindin genes in rat incisor: regulation by 1,25-dihydroxyvitamin D3[J]. Dev Biol, 1993,155(1):172-179.
doi: 10.1006/dbio.1993.1016 pmid: 8380146 |
[28] | Papagerakis P. Differential epithelial and mesenchymal regulation of tooth-specific matrix protein sexpression by 1, 25-dihydroxyvitamin D3 in vivo[J]. Connect Tissue Res, 2002,43(2/3):372-375. |
[29] |
Onishi T. Relationship of vitamin D with calbindin D9k and D28k expression in ameloblasts.[J]. Arch Oral Biol, 2008,53(2):117-123.
doi: 10.1016/j.archoralbio.2007.09.009 pmid: 17981260 |
[30] | Bailleul-Forestier I, Davideau JL, Papagerakis P, et al. Immunolocalization of vitamin D receptor and calbindin-D28k in human tooth germ[J]. Pediatr Res, 1996,39(4):636-642. |
[31] | Botelho J, Machado V, Proença L, et al. Vitamin D deficiency and oral health: a comprehensive review[J]. Nutrients, 2020,12(5):1471-1487. |
[32] | 李媛媛, 崔凌凌, 李鑫, 等. 中国汉族男性原发性痛风与维生素D受体基因rs2228570多态性的遗传易感性研究[J]. 中华内分泌代谢杂志, 2015,31(4):316-319. |
[33] |
Gross C, Eccleshall TR, Malloy PJ, et al. The presence of a polymorphism at the translation initiation site of the vitamin D receptor gene is associated with low bone mineral density in postmenopausal Mexican-American women[J]. J Bone Miner Res, 1996,11(12):1850-1855.
doi: 10.1002/jbmr.5650111204 pmid: 8970885 |
[34] |
Gross C, Krishnan AV, Malloy PJ, et al. The vitamin D receptor gene start codon polymorphism: A functional analysis of FokI variants[J]. J Bone Miner Res, 1998,13(11):1691-1699.
doi: 10.1359/jbmr.1998.13.11.1691 pmid: 9797477 |
[35] | Egan JB, Thompson PA, Vitanov MV, et al. Vitamin D receptor ligands, adenomatous polyposis coli, and the vitamin D receptor FokI polymorphism collectively modulate beta-catenin activity in colon cancer cells[J]. Mol Carcinogen, 2010,49(4):337-352. |
[36] |
Alimirah F, Peng XJ, Murillo G, et al. Functional significance of vitamin D receptor FokI polymorphismin human breast cancer cells[J]. PLoS One, 2011,6(1):e16024.
doi: 10.1371/journal.pone.0016024 pmid: 21283672 |
[37] | Liu K, Han B, Meng HX, et al. Influence of rs2228570 on transcriptional activation by the vitamin D receptor in human gingival fibroblasts and periodontal ligament cells[J]. J Clin Periodontol, 2017,88(9):1-19. |
[38] |
Li S, Yang MH, Zeng CA, et al. Association of vitamin D receptor gene polymorphisms in Chinese patients with generalized aggressive periodontitis[J]. J Periodontal Res, 2008,43(3):360-363.
doi: 10.1111/j.1600-0765.2007.01044.x pmid: 18205735 |
[39] |
Xiong DH, Shen H, Zhao LJ, et al. Robust and comprehensive analysis of 20 osteoporosis candidate genes by very high-density single-nucleotide polymorphism screen among 405 white nuclear families identified significant association and gene-gene interaction[J]. J Bone Miner Res, 2006,21(11):1678-1695.
doi: 10.1359/jbmr.060808 pmid: 17002564 |
[40] |
Lawrence AW, Mary EF, Zheng YX, et al. In vitro characterization of a human calcitonin receptor gene polymorphism[J]. Mutat Res Fund Mol M, 2003,522(1/2):93-105.
doi: 10.1016/S0027-5107(02)00282-8 |
[41] |
Giroux S, Elfassihi L, Clément V, et al. High-density polymorphisms analysis of 23 candidate genes for association with bone mineral density[J]. Bone, 2010,47(5):975-981.
doi: 10.1016/j.bone.2010.06.030 |
[42] |
Yanovich R, Friedman E, Milgrom R, et al. Candidate gene ana-lysis in israeli soldiers with stress fractures[J]. J Sports Sci Med, 2012,11(1):147-155.
pmid: 24149131 |
[1] | 朱小玲,李文静,王宪娥,宋文莉,徐莉,张立,冯向辉,路瑞芳,释栋,孟焕新. 细胞色素B-245α链及胆固醇酯转运蛋白基因多态性与广泛型侵袭性牙周炎易感性的关系[J]. 北京大学学报(医学版), 2022, 54(1): 18-22. |
[2] | 刘梅歌,方朴,王严,丛璐,范洋溢,袁远,徐燕,张俊,洪道俊. 远端型遗传性运动神经病8例的临床、病理及遗传学特点[J]. 北京大学学报(医学版), 2021, 53(5): 957-963. |
[3] | 张梅香,史文芝,刘建新,王春键,李燕,王蔚,江滨. MLL-AF6融合基因阳性急性髓系白血病的临床特征及预后[J]. 北京大学学报(医学版), 2021, 53(5): 915-920. |
[4] | 冯科,倪菁菁,夏彦清,曲晓伟,张慧娟,万锋,洪锴,张翠莲,郭海彬. 3例SUN5基因变异导致无头精子症的遗传学分析和助孕治疗结局[J]. 北京大学学报(医学版), 2021, 53(4): 803-807. |
[5] | 郭子宁, 梁志生, 周仪, 张娜, 黄捷. 基于国际疾病分类的心血管疾病亚型的基因组学研究[J]. 北京大学学报(医学版), 2021, 53(3): 453-459. |
[6] | 周川, 马雪, 邢云昆, 李璐迪, 陈洁, 姚碧云, 傅娟玲, 赵鹏. 基于肿瘤基因组图谱数据库探索性筛选潜在泛癌生物标志物[J]. 北京大学学报(医学版), 2021, 53(3): 602-607. |
[7] | 赵凯,常志芳,王志华,庞春艳,王永福. 基因沉默肽基精氨酸脱亚胺酶4的表达对胶原诱导关节炎小鼠肺间质病变的影响[J]. 北京大学学报(医学版), 2021, 53(2): 235-239. |
[8] | 吴君怡,余淼,孙仕晨,樊壮壮,郑静蕾,张刘陶,冯海兰,刘洋,韩冬. 少汗性外胚层发育不良患者EDA基因突变检测及表型分析[J]. 北京大学学报(医学版), 2021, 53(1): 24-33. |
[9] | 高鹏,雒艳萍,李俊峰. B/C基因型的乙型肝炎病毒对不同免疫阶段慢性乙型肝炎患者T淋巴细胞及其亚群的影响[J]. 北京大学学报(医学版), 2020, 52(6): 1153-1156. |
[10] | 刘滕飞,林涛,任利辉,李广平,彭建军. CMTM5基因与冠状动脉粥样硬化性心脏病的关联研究及机制探讨[J]. 北京大学学报(医学版), 2020, 52(6): 1082-1087. |
[11] | 李文咏,王梦莹,周仁,王斯悦,郑鸿尘,朱洪平,周治波,吴涛,王红,石冰. 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020, 52(5): 809-814. |
[12] | 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,李静,李楠,周治波,朱洪平,吴涛,胡永华. WNT代谢通路相关基因与中国人群非综合征型唇腭裂发病风险的交互作用[J]. 北京大学学报(医学版), 2020, 52(5): 815-820. |
[13] | 柳小珍,李莹莹,杨丽萍. 全外显子组测序和目标序列靶向捕获测序在遗传性视网膜变性基因诊断中的差异[J]. 北京大学学报(医学版), 2020, 52(5): 836-844. |
[14] | 胡双,杨丽萍. 不同血清型腺相关病毒载体转染小鼠视网膜后的表达效率[J]. 北京大学学报(医学版), 2020, 52(5): 845-850. |
[15] | 鲍轶,莫娟芬. 同时性多原发肺腺癌组织编码转录因子ERG基因相同位点突变1例报告[J]. 北京大学学报(医学版), 2020, 52(5): 971-974. |
|