北京大学学报(医学版) ›› 2015, Vol. 47 ›› Issue (1): 47-51.

• 论著 • 上一篇    下一篇

联合应用基质细胞衍生因子1、辛伐他汀及骨胶原支架进行体内异位成骨

欧蒙恩1, 2*,张晓2*,刘云松2,葛严军2,周永胜2, 3△   

  1. (1. 北京大学口腔医学院·口腔医院第三门诊部,北京100083; 2.北京大学口腔医学院·口腔医院修复科,北京100081; 3. 口腔数字化医疗技术和材料国家工程实验室,北京 100081)
  • 出版日期:2015-02-18 发布日期:2015-02-18

Ectopic osteogenesis of stromal cell-derived factor 1 combined with simvastatin loaded collagen scaffold in vivo

OU Meng-en1, 2*,ZHANG Xiao2*,LIU Yun-song2,GE Yan-jun2,ZHOU Yong-sheng2, 3△   

  1. (1. Third Clinical Division, Peking University School and Hospital of Stomatology, Beijing 100083, China; 2.Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China;3. National Engineering Lab for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing 100081, China)
  • Online:2015-02-18 Published:2015-02-18

摘要: 目的:探讨使用小鼠基质细胞衍生因子1(murine stromal cell-derived factor 1, mSDF-1)结合辛伐他汀(simvastatin,SIM)以及骨胶原支架(Bio-Oss®)构建无外加种子细胞的组织工程化骨的可行性,并检验其体内异位成骨的效果。方法:将32只ICR小鼠随机分为4组,每组8只,于小鼠颅部做皮肤切口,各组小鼠分别植入:(1)1 ∶50(体积比)的二甲基亚砜(dimethyl sulfoxide,DMSO)/磷酸盐缓冲液(phosphatebuffered saline,PBS)混合液+骨胶原支架(空白对照组);(2)10-3 mol/L SIM溶液+骨胶原支架(SIM组);(3)200 mg/L mSDF-1溶液+骨胶原支架(mSDF-1组);(4)10-3 mol/L SIM+200 mg/L mSDF-1溶液+骨胶原支架(SIM+mSDF-1组)。植入1周后,连续2 d,每天分别在支架局部注射上述各组相应的溶液50 μL。饲养6周后,取出支架及其周围组织,通过软X射线投射成像及灰度测定、HE染色、免疫组织化学染色的方法,定性及定量观察其成骨效果。结果:SIM+mSDF-1组软X射线灰度值[(421 836.5±65 425.7)像素]明显高于空白对照组[(153 345.6±45 222.2)像素,P<0.01]、SIM组[(158 119.2±100 284.2)像素,P<0.01]以及mSDF-1组[(255 529.5±152 142.4)像素,P<0.05];在SIM+mSDF-1组内可见明显的骨桥蛋白和骨钙素的表达;SIM+mSDF-1组血管丛密度[(46±8)条/mm2]明显高于空白对照组[(23±7)条/mm2, P<0.01]和SIM组[(24±6)条/mm2, P<0.01]。结论:使用mSDF-1结合SIM以及骨胶原支架构建的无外加种子细胞的组织工程化骨可于小鼠颅部皮下异位成骨。

关键词: 趋化因子CXCL12, 辛伐他汀, 胶原, 骨生成

Abstract: Objective: To construct and evaluate a novel tissue-engineered bone composed of murine stromal cell-derived factor 1(mSDF-1), simvastatin (SIM) and collagen scaffold (Bio-Oss®), serving as a cell-homing approach for bone formation. Methods:  In the study, 32 ICR mice were randomly divided into 4 groups,each group including 8 mice. The drug-loaded collagen scaffolds were implanted subcutaneously onto the cranium of each mouse according to the groups: (1) 1 ∶50 (volume ratio) dimethyl sulfoxide (DMSO) / phosphate-buffered saline(PBS) solution + collagen scaffold (blank control group); (2) 10-3 mol/L SIM solution + collagen scaffold (SIM group); (3) 200 mg/L mSDF-1solution + collagen scaffold (mSDF-1 group); and (4) 10-3 mol/L SIM +200 mg/L mSDF-1 solution + collagen scaffold (SIM + mSDF-1 group). One week after implantation, the mice were treated by injecting the same drug solution mentioned above around the scaffold once a day for two days. The specimens were harvested 6 weeks after implantation and the bone formation was evaluated by soft X-ray analysis, HE staining and immunohistochemical staining. Angiogenesis of each group was checked by calculation of vessels in each tissue section. Results: Six weeks after implantation, the collagen scaffolds were retrieved. The value of gray scale for the SIM+mSDF-1 group[(421 836.5±65 425.7)pixels] was significantly higher than that of the blank control group[(153 345.6±45 222.2)pixels, P<0.01], the SIM group [(158 119.2±100 284.2)pixels, P<0.01], and the mSDF-1 group[(255 529.5±152 142.4)pixels, P<0.05]; HE staining analysis revealed that significant bone formation was achieved in the SIM + mSDF-1 group; The immunohistochemical staining showed the existence of osteopontin and osteocalcin in the SIM + mSDF-1 group; There were more vessels in the SIM+mSDF-1 group[(46±8)vessels/mm2] than in the blank control group [(23±7) vessels/mm2, P<0.01], and the SIM group[(24±6) vessels/mm2, P<0.01]. Conclusion: The novel tissue-engineered bone composed of mSDF-1, SIM and collagen scaffolds has the potential to form bone subcutaneously in vivo. It represents a novel method of in vivo bone regeneration without seed cell delivery.

Key words: Chemokine CXCL12, Simvastatin, Collagen, Osteogenesis

[1] 段登辉,WANGHom-Lay,王恩博. 可吸收胶原膜在颊侧袋形瓣引导性骨再生手术中的作用: 一项回顾性影像学队列研究[J]. 北京大学学报(医学版), 2023, 55(6): 1097-1104.
[2] 王磊,金香淑,董慧君,欧国敏,赖鑫源,庄辉,李彤,向宽辉. 基于COL1A1启动子和增强型绿色荧光蛋白基因建立人肝星状细胞活化的细胞模型[J]. 北京大学学报(医学版), 2023, 55(5): 876-885.
[3] 马欣蓉,朱晓鸣,李静,李德利,李和平,谭建国. 新型大气压冷等离子体射流处理对牙本质胶原纤维交联化的影响[J]. 北京大学学报(医学版), 2022, 54(1): 83-88.
[4] 杜文瑜,杨静文,姜婷. 甲磺酸去铁胺促进大鼠颅骨临界骨缺损血管化骨再生的早期连续观察[J]. 北京大学学报(医学版), 2021, 53(6): 1171-1177.
[5] 张胜男,安娜,欧阳翔英,刘颖君,王雪奎. 生长停滞特异性蛋白6在人牙周膜细胞迁移及成骨分化中的作用[J]. 北京大学学报(医学版), 2021, 53(1): 9-15.
[6] 王平,宋婧,方翔宇,李鑫,刘栩,贾园,栗占国,胡凡磊. 成红细胞样Ter细胞在胶原诱导性关节炎发病中的作用[J]. 北京大学学报(医学版), 2019, 51(3): 445-450.
[7] 张倩莉,袁重阳,刘力,温世鹏,王晓燕. 胶原静电纺纳米纤维膜对人牙髓细胞生物学行为的影响[J]. 北京大学学报(医学版), 2019, 51(1): 28-34.
[8] 朱晓鸣,齐璇,李德利,张玉玮,李和平,谭建国. 不同温度新型大气压冷等离子体处理对牙本质粘接强度的影响[J]. 北京大学学报(医学版), 2019, 51(1): 43-48.
[9] 隋华欣,吕培军,王勇,冯驭驰. 低能量激光照射对人脂肪来源干细胞/海藻酸钠/明胶三维生物打印体成骨能力的影响[J]. 北京大学学报(医学版), 2018, 50(5): 868-875.
[10] 刘婧寅,陈飞,葛严军,魏菱,潘韶霞,冯海兰. 选择性激光熔化种植体对早期骨矿化沉积率的影响[J]. 北京大学学报(医学版), 2018, 50(1): 117-122.
[11] 邓晓莉,钟丽君,孙琳,李常虹,刘湘源. 抗collectin 11抗体在系统性红斑狼疮诊断中的意义[J]. 北京大学学报(医学版), 2016, 48(6): 982-986.
[12] 陈飞,潘韶霞,冯海兰. 转化生长因子β1和血管内皮生长因子在浓缩生长因子各层中的分布及含量特点[J]. 北京大学学报(医学版), 2016, 48(5): 860-865.
[13] 秦雪嫣,赵华翔,张倩,陈峰,林久祥. NELL-1: 高效特异的新型生长因子[J]. 北京大学学报(医学版), 2016, 48(2): 380-383.
[14] 温泉,赵玉鸣,王媛媛,王旭,凌龙,葛立宏. 基质细胞衍生因子1对人牙髓干细胞增殖、迁移和成牙本质能力的影响[J]. 北京大学学报(医学版), 2016, 48(1): 23-29.
[15] 宋杨,王晓飞,王宇光,孙玉春,吕培军△. 人脂肪间充质干细胞与生物材料共混物三维打印体的体内成骨[J]. 北京大学学报(医学版), 2016, 48(1): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!