北京大学学报(医学版) ›› 2015, Vol. 47 ›› Issue (3): 483-488. doi: 10.3969/j.issn.1671-167X.2015.03.021

• 论著 • 上一篇    下一篇

简单合并模型与双变量模型在诊断试验Meta分析中的使用现状调查

黄元升1,杨智荣2,詹思延1,2△   

  1. (1.北京大学公共卫生学院流行病与卫生统计学系,北京100191; 2.北京大学医学部药品上市后安全性研究中心,北京100191)
  • 出版日期:2015-06-18 发布日期:2015-06-18

Comparison of simple pooling and bivariate model used in meta-analyses of diagnostic test accuracy published in Chinese journals

HUANG Yuan-sheng1, YANG Zhi-rong2, ZHAN Si-yan1,2△   

  1. (1.Department of Epidemiology and Biostatistics, Peking University School of Public Health, Beijing 100191, China; 2. Center of Postmarketing Safety Evaluation, Peking University Health Science Center,Beijing 100191, China)
  • Online:2015-06-18 Published:2015-06-18

摘要: 目的:调查2014年1月至11月国内期刊发表的诊断试验准确性(diagnostic test accuracy,DTA)Meta分析中简单合并模型与双变量模型的使用现状,分析两模型间结果的差异性,并探讨这种差异性与研究间异质性大小的关系。方法:对《中国生物医学文献数据库》2014年1月至11月收录的文献进行检索,纳入DTA Meta分析,描述模型使用的相关信息,提取四格表数据,使用简单合并模型和双变量模型进行重分析,用非参数检验比较模型结果间差值,定性探究灵敏度、特异度异质性大小与结果间差值的关系。结果:共纳入55篇文章,包括58个DTA Meta分析,其中25个Meta分析用于重分析。简单合并模型与双变量模型的使用比例分别为90.9%(50/55)、1.8%(1/55),使用其他合并模型或未合并灵敏度和特异度的文献比例为7.3%(4/55)。在50篇使用简单合并模型合并灵敏度和特异度的文章中,41篇(82.0%)存在误用Meta-disc软件的可能。两种模型所得灵敏度、特异度差值中位数均为0.011(P<0.001,P=0.031),灵敏度和特异度差值随着I2增大变异程度逐渐增大,I2大于75%时变异程度更为明显。结论:国内期刊发表的DTA Meta分析对灵敏度和特异度进行合并时大多使用简单合并模型,且Meta-disc软件常被误认为可对灵敏度和特异度进行随机效应合并;简单合并模型可能低估真实值,尤其研究间异质性大时其合并值与双变量模型间差异更为明显,研究者应当提高正确认识和选用合并方法的能力。

关键词: 诊断试验, 常规, Meta分析, 模型, 统计学

Abstract: Objective:To investigate the use of simple pooling and bivariate model in meta-analyses of diagnostic test accuracy (DTA) published in Chinese journals (January to November, 2014), compare the differences of results from these two models, and explore the impact of between-study variability of sensitivity and specificity on the differences. Methods:DTA meta-analyses were searched through Chinese Biomedical Literature Database (January to November, 2014). Details in models and data for fourfold table were extracted. Descriptive analysis was conducted to investigate the prevalence of the use of simple pooling method and bivariate model in the included literature. Data were re-analyzed with the two models respectively. Differences in the results were examined by Wilcoxon signed rank test. How the results differences were affected by between-study variability of sensitivity and specificity, expressed by I2, was explored. Results:The 55 systematic reviews, containing 58 DTA meta-analyses, were included and 25 DTA meta-analyses were eligible for re-analysis. Simple pooling was used in 50 (90.9%)systematic reviews and bivariate model in 1 (1.8%). The remaining 4 (7.3%) articles used other models pooling sensitivity and specificity or pooled neither of them. Of the reviews simply pooling sensitivity and specificity, 41(82.0%) were at the risk of wrongly using Meta-disc software. The differences in medians of sensitivity and specificity between two models were both 0.011( P<0.001, P=0.031 respectively). Greater differences could be found as I2 of sensitivity or specificity became larger, especially when I2>75%.Conclusion: Most DTA meta-analyses published in Chinese journals(January to November, 2014) combine the sensitivity and specificity by simple pooling. Meta-disc software can pool the sensitivity and specificity only through fixed-effect model, but a high proportion of authors think it can implement random-effect model. Simple pooling tends to underestimate the results compared with bivariate model. The greater the between-study variance is, the more likely the simple pooling has larger deviation. It is necessary to increase the knowledge level of statistical methods and software for meta-analyses of DTA data.

Key words: Diagnostic tests, routine, Meta-analysis, Models, statistical

中图分类号: 

  • R195.1

[1] 金江, 陈雪, 赵琰, 贾军, 张建中. 卵清蛋白诱导的特应性皮炎小鼠模型中白细胞介素-25的作用及其调控意义[J]. 北京大学学报(医学版), 2024, 56(5): 756-762.
[2] 柯涵炜, 王起, 许克新. 优化环磷酰胺剂量在间质性膀胱炎/膀胱疼痛综合征啮齿动物模型中的应用[J]. 北京大学学报(医学版), 2024, 56(5): 908-912.
[3] 何海龙,李清,徐涛,张晓威. 构建显微精索手术治疗精索疼痛的术后疼痛缓解预测模型[J]. 北京大学学报(医学版), 2024, 56(4): 646-655.
[4] 刘佐相,陈晓薇,赵厚宇,詹思延,孙凤. 真实世界中2型糖尿病患者二甲双胍联用西格列汀的心血管安全性[J]. 北京大学学报(医学版), 2024, 56(3): 424-430.
[5] 周恬静,刘秋萍,张明露,刘晓非,康佳丽,沈鹏,林鸿波,唐迅,高培. 基于马尔科夫模型的社区人群启动降压药物治疗预防心血管病的策略比较[J]. 北京大学学报(医学版), 2024, 56(3): 441-447.
[6] 苏俊琪,王晓颖,孙志强. 舌鳞状细胞癌根治性切除术后患者预后预测列线图的构建与验证[J]. 北京大学学报(医学版), 2024, 56(1): 120-130.
[7] 刘欢锐,彭祥,李森林,苟欣. 基于HER-2相关基因构建风险模型用于膀胱癌生存预后评估[J]. 北京大学学报(医学版), 2023, 55(5): 793-801.
[8] 张云静,乔丽颖,祁萌,严颖,亢伟伟,刘国臻,王明远,席云峰,王胜锋. 乳腺癌患者新发心血管疾病预测模型的建立与验证:基于内蒙古区域医疗数据[J]. 北京大学学报(医学版), 2023, 55(3): 471-479.
[9] 张明露,刘秋萍,巩超,王佳敏,周恬静,刘晓非,沈鹏,林鸿波,唐迅,高培. 阿司匹林用于心血管病一级预防的不同策略比较:一项马尔可夫模型研究[J]. 北京大学学报(医学版), 2023, 55(3): 480-487.
[10] 袁婷婷,李燊,吴燕,吴海涛. 长期自由选择饮酒小鼠模型的建立及其行为学评价[J]. 北京大学学报(医学版), 2023, 55(2): 315-323.
[11] 高梓翔,王勇,温奥楠,朱玉佳,秦庆钊,张昀,王晶,赵一姣. 基于三维下颌骨平均模型的颌骨标志点自动确定方法[J]. 北京大学学报(医学版), 2023, 55(1): 174-180.
[12] 孟令玮,李雪,高胜寒,李悦,曹瑞涛,张毅,潘韶霞. 三种方法建立大鼠种植体周炎模型的比较[J]. 北京大学学报(医学版), 2023, 55(1): 22-29.
[13] 朱琳,张维宇,许克新. 环磷酰胺诱导SD大鼠膀胱疼痛综合征模型的有效性[J]. 北京大学学报(医学版), 2022, 54(4): 735-740.
[14] 巩超,刘秋萍,王佳敏,刘晓非,张明露,杨瀚,沈鹏,林鸿波,唐迅,高培. 社区人群他汀干预策略预防心血管病效果的马尔可夫模型评价[J]. 北京大学学报(医学版), 2022, 54(3): 443-449.
[15] 王佳敏,刘秋萍,张明露,巩超,刘舒丹,陈暐烨,沈鹏,林鸿波,高培,唐迅. 基于马尔可夫模型的社区人群糖尿病筛查预防心血管病的效果评价[J]. 北京大学学报(医学版), 2022, 54(3): 450-457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!