北京大学学报(医学版) ›› 2017, Vol. 49 ›› Issue (5): 829-834. doi: 10.3969/j.issn.1671-167X.2017.05.015
刘洪江1, 石连杰2, 胡凡磊1, 姚海红1, 栗占国1, 贾园1
LIU Hong-jiang1, SHI Lian-jie2, HU Fan-lei1, YAO Hai-hong1, LI Zhan-guo1, JIAYuan1
摘要: 目的 检测趋化因子配体19(C-C chemokine ligand 19, CCL19)在系统性红斑狼疮(systemic lupus erythematosus, SLE)患者血清中的表达,并分析其与SLE患者临床和实验室指标的关系,探讨CCL19在SLE发病机制中的可能作用。方法 采用酶联免疫吸附试验(enzyme linked immunosorbent assay, ELISA)法检测90例SLE患者(未接受过糖皮质激素和免疫抑制剂治疗的初治患者15例,曾治疗过的患者75例)和30名健康对照血清中CCL19的表达水平,分析SLE患者血清CCL19水平与临床特征和实验室指标的相关性。利用流式细胞术检测SLE患者B细胞及其亚群的比例,并进行血清CCL19水平与B细胞及其亚群比例的相关性分析。数据分析采用独立样本t检验、配对t检验、Pearson和Spearman相关分析。结果 (1)SLE初治患者和经治患者血清CCL19表达水平[分别为(596.25±409.19) ng/L和(422.90±395.84) ng/L]显著高于健康对照组[(157.79±125.23) ng/L,P均<0.001],初治患者组血清CCL19表达水平又高于经治患者组(P<0.05);(2)SLE患者血清CCL19表达水平与抗双链脱氧核糖核酸(double-stranded deoxyribonucleic acid, dsDNA)抗体、抗核小体抗体(anti-nucleosome antibody, AnuA)水平呈正相关(分别为r=0.38, P=0.007; r=0.332, P=0.029),与免疫球蛋白IgA、IgG、IgM水平呈正相关(分别为r=0.30, P=0.005; r=0.31, P=0.003; r=0.469, P=0.0001);(3)SLE有光过敏、关节炎和继发干燥综合征患者血清CCL19表达水平[分别为(562.25±399.12) ng/L、(565.6±435.24) ng/L和(694.9±531.02) ng/L]分别较无光过敏、无关节炎和未继发干燥综合征SLE患者高[分别为(394.7±281.42) ng/L、(385.90±325.33) ng/L和(424.8±305.46) ng/L],P均<0.05;(4)血清CCL19水平与外周血CD27-B 细胞和CD27-IgD-双阴性记忆性 B 细胞的比例呈正相关(分别为r=0.519, P=0.007; r=0.461, P=0.018),与CD27+记忆性B细胞和CD27+IgD-转化后记忆性B细胞的比例呈负相关(分别为r=-0.433, P=0.027; r=-0.616, P=0.001)。结论 SLE患者血清中高表达CCL19,与自身抗体的产生显著相关,CCL19可能通过影响B细胞亚群分布的内稳态参与SLE发病。
中图分类号:
[1] Wahren-Herlenius M, Dorner T. Immunopathogenic mechanisms of systemic autoimmune disease[J]. Lancet, 2013, 382(9894):819-831. [2] Dorner T, Giesecke C, Lipsky PE. Mechanisms of B cell autoimmunity in SLE[J]. Arthritis Res Ther, 2011, 13(5): 243. [3] Sanz I. Rationale for B cell targeting in SLE[J]. Semin Immunopathol, 2014, 36(3): 365-375. [4] Le Y, Zhou Y, Iribarren P, et al. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease[J]. Cell Mol Immunol, 2004, 1(2): 95-104. [5] Bachmann MF, Kopf M, Marsland BJ. Chemokines: more than just road signs[J]. Nat Rev Immunol, 2006, 6(2): 159-164. [6] Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997, 40(9): 1725. [7] Gladman DD, Ibanez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000[J]. J Rheumatol, 2002, 29(2): 288-291. [8] Lipsky PE. Systemic lupus erythematosus: an autoimmune disease of B cell hyperactivity[J]. Nat Immunol, 2001, 2(9): 764-766. [9] Jacob N, Stohl W. Autoantibody-dependent and autoantibody-independent roles for B cells in systemic lupus erythematosus: past, present, and future[J]. Autoimmunity, 2010, 43(1): 84-97. [10] Odendahl M, Jacobi A, Hansen A, et al. Disturbed peripheral B lymphocyte homeostasis in systemic lupus erythematosus[J]. J Immunol, 2000, 165(10): 5970-5979. [11] Rodriguez-Bayona B, Ramos-Amaya A, Perez-Venegas JJ, et al. Decreased frequency and activated phenotype of blood CD27 IgD IgM B lymphocytes is a permanent abnormality in systemic lupus erythematosus patients[J]. Arthritis Res Ther, 2010, 12(3): R108. [12] Korganow AS, Knapp AM, Nehme-Schuster H, et al. Peripheral B cell abnormalities in patients with systemic lupus erythematosus in quiescent phase: decreased memory B cells and membrane CD19 expression[J]. J Autoimmun, 2010, 34(4): 426-434. [13] Blair PA, Norena LY, Flores-Borja F, et al. CD19(+)CD24(hi)CD38(hi) B cells exhibit regulatory capacity in healthy individuals but are functionally impaired in systemic Lupus Erythematosus patients[J]. Immunity, 2010, 32(1): 129-140. [14] Jin L, Weiqian C, Lihuan Y. Peripheral CD24hi CD27 + CD19 + B cells subset as a potential biomarker in naive systemic lupus erythematosus[J]. Int J Rheum Dis, 2013, 16(6): 698-708. [15] Yu SL, Kuan WP, Wong CK, et al. Immunopathological roles of cytokines, chemokines, signaling molecules, and pattern-recognition receptors in systemic lupus erythematosus[J]. Clin Dev Immunol, 2012, 2012: 715190. [16] Okamoto H, Kobayashi A, Yamanaka H. Cytokines and chemokines in neuropsychiatric syndromes of systemic lupus erythematosus[J]. J Biomed Biotechnol, 2010, 2010: 268436. [17] 吴春晨, 何玉玲, 陈朗, 等. CXCL13和CCL19联合诱导的B淋巴细胞白血病细胞抗凋亡作用[J]. 医学研究通讯, 2004, 33(12): 12-14. [18] Sellam J, Rouanet S, Hendel-Chavez H, et al. CCL19, a B cell chemokine, is related to the decrease of blood memory B cells and predicts the clinical response to rituximab in patients with rheumatoid arthritis[J]. Arthritis Rheum, 2013, 65(9): 2253-2261. [19] Mathes AL, Christmann RB, Stifano G, et al. Global chemokine expression in systemic sclerosis (SSc): CCL19 expression correlates with vascular inflammation in SSc skin[J]. Ann Rheum Dis, 2014, 73(10): 1864-1872. [20] Fecteau JF, Cote G, Neron S. A new memory CD27 - IgG + B cell population in peripheral blood expressing VH genes with low frequency of somatic mutation[J]. J Immunol, 2006, 177(6): 3728-3736. [21] Wei C, Anolik J, Cappione A, et al. A new population of cells lacking expression of CD27 represents a notable component of the B cell memory compartment in systemic lupus erythematosus[J]. J Immunol, 2007, 178(10): 6624-6633. [22] Klein U, Rajewsky K, Kuppers R. Human immunoglobulin (Ig)M + IgD + peripheral blood B cells expressing the CD27 cell surface antigen carry somatically mutated variable region genes: CD27 as a general marker for somatically mutated (memory) B cells[J]. J Exp Med, 1998, 188(9): 1679-1689. [23] Jacobi AM, Reiter K, Mackay M, et al. Activated memory B cell subsets correlate with disease activity in systemic lupus erythematosus: delineation by expression of CD27, IgD, and CD95[J]. Arthritis Rheum, 2008, 58(6): 1762-1773. [24] Nanki T, Takada K, Komano Y, et al. Chemokine receptor expression and functional effects of chemokines on B cells: implication in the pathogenesis of rheumatoid arthritis[J]. Arthritis Res Ther, 2009, 11(5): R149. |
[1] | 武志慧, 胡明智, 赵巧英, 吕凤凤, 张晶莹, 张伟, 王永福, 孙晓林, 王慧. miR-125b-5p修饰脐带间充质干细胞对系统性红斑狼疮的免疫调控机制[J]. 北京大学学报(医学版), 2024, 56(5): 860-867. |
[2] | 李正芳,罗采南,武丽君,吴雪,孟新艳,陈晓梅,石亚妹,钟岩. 抗氨基甲酰化蛋白抗体在诊断类风湿关节炎中的应用价值[J]. 北京大学学报(医学版), 2024, 56(4): 729-734. |
[3] | 乔佳佳,田聪,黄晓波,刘军. 肾结石合并系统性红斑狼疮行经皮肾镜碎石取石术的安全性和有效性评估[J]. 北京大学学报(医学版), 2024, 56(4): 745-749. |
[4] | 任立敏,赵楚楚,赵义,周惠琼,张莉芸,王友莲,沈凌汛,范文强,李洋,厉小梅,王吉波,程永静,彭嘉婧,赵晓珍,邵苗,李茹. 系统性红斑狼疮低疾病活动度及缓解状况的真实世界研究[J]. 北京大学学报(医学版), 2024, 56(2): 273-278. |
[5] | 赖展鸿,李嘉辰,贠泽霖,张永刚,张昊,邢晓燕,邵苗,金月波,王乃迪,李依敏,李玉慧,栗占国. 特发性炎性肌病完全临床应答相关因素的单中心真实世界研究[J]. 北京大学学报(医学版), 2024, 56(2): 284-292. |
[6] | 李文根,古晓东,翁锐强,刘苏东,陈超. 血浆外泌体miR-34-5p和miR-142-3p在系统性硬化症中的表达及临床意义[J]. 北京大学学报(医学版), 2023, 55(6): 1022-1027. |
[7] | 孟彦宏,陈怡帆,周培茹. CENP-B抗体阳性的原发性干燥综合征患者的临床和免疫学特征[J]. 北京大学学报(医学版), 2023, 55(6): 1088-1096. |
[8] | 罗芷筠,吴佳佳,宋优,梅春丽,杜戎. 伴神经精神系统病变的系统性红斑狼疮相关巨噬细胞活化综合征2例[J]. 北京大学学报(医学版), 2023, 55(6): 1111-1117. |
[9] | 姚海红,杨帆,唐素玫,张霞,何菁,贾园. 系统性红斑狼疮及成人Still病合并巨噬细胞活化综合征的临床特点及诊断指标[J]. 北京大学学报(医学版), 2023, 55(6): 966-974. |
[10] | 赵祥格,刘佳庆,黄会娜,陆智敏,白自然,李霞,祁荆荆. 干扰素-α介导系统性红斑狼疮外周血CD56dimCD57+自然杀伤细胞功能的损伤[J]. 北京大学学报(医学版), 2023, 55(6): 975-981. |
[11] | 林卓华,蔡如意,孙洋,穆荣,崔立刚. 超微血流显像评价系统性硬化症指端血流的方法学与临床应用[J]. 北京大学学报(医学版), 2023, 55(4): 636-640. |
[12] | 赵亚楠,范慧芸,王翔宇,罗雅楠,张嵘,郑晓瑛. 孤独症患者过早死亡风险及死亡原因[J]. 北京大学学报(医学版), 2023, 55(2): 375-383. |
[13] | 俞光岩,宿骞,张艳,吴立玲. 唾液腺疾病与全身系统性疾病的相关性[J]. 北京大学学报(医学版), 2023, 55(1): 1-7. |
[14] | 陈适,刘田. 重视系统性血管炎的早期识别和个体化治疗[J]. 北京大学学报(医学版), 2022, 54(6): 1065-1067. |
[15] | 张璐,陈澄,翁梅婷,郑爱萍,苏美玲,王庆文,蔡月明. 狼疮肾炎患者肾小管间质损伤的自身抗体特征[J]. 北京大学学报(医学版), 2022, 54(6): 1094-1098. |
|