北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (1): 28-34. doi: 10.19723/j.issn.1671-167X.2019.01.006

• 论著 • 上一篇    下一篇

胶原静电纺纳米纤维膜对人牙髓细胞生物学行为的影响

张倩莉1,袁重阳1,刘力2,温世鹏2,(),王晓燕1,()   

  1. 1. 北京大学口腔医学院·口腔医院,牙体牙髓科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
    2. 北京化工大学,北京市先进弹性体工程技术研究中心, 北京 100029
  • 收稿日期:2018-10-10 出版日期:2019-02-18 发布日期:2019-02-26
  • 通讯作者: 温世鹏,王晓燕 E-mail:wensp@mail.buct.edu.cn;wangxiaoyan@pkuss.bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(51503004)

Effects of electrospun collagen nanofibrous matrix on the biological behavior of human dental pulp cells

Qian-li ZHANG1,Chong-yang YUAN1,Li LIU2,Shi-peng WEN2,(),Xiao-yan WANG1,()   

  1. 1. Department of Cariology and Endodontology, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Beijing Engineering Research Centre of Advanced Elastomers, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2018-10-10 Online:2019-02-18 Published:2019-02-26
  • Contact: Shi-peng WEN,Xiao-yan WANG E-mail:wensp@mail.buct.edu.cn;wangxiaoyan@pkuss.bjmu.edu.cn
  • Supported by:
    Supported by the National Natural Science Foundation of China(51503004)

摘要:

目的:比较人牙髓细胞(human dental pulp cells,hDPCs)在胶原静电纺纳米纤维膜(collagen nanofibrous matrix,Col_NFM)与直接沉积胶原膜(collagen flat film,Col_FF)上的黏附、增殖和分化情况,探究胶原纳米纤维支架对hDPCs生物学行为的影响。方法:采用扫描电镜(scanning electron microscopy, SEM)观察两种胶原膜的表面形貌,并比较其表面接触角和溶胀性能。将hDPCs分别接种于两种胶原膜表面共培养,SEM和激光共聚焦显微镜(laser scanning microscope,LSM)观察hDPCs在支架表面的生长形态,并用CCK-8法测定hDPCs的增殖情况。在诱导14 d后,比较成牙本质分化相关基因的表达变化,茜素红染色观察矿化结节的形成情况。结果:SEM图可见Col_NFM组纤维直径为(884±159) nm,纤维之间存在大量三维连通的孔隙结构,而Col_FF组表面平坦,未见孔隙结构。Col_NFM组瞬间表面接触角为85.03°±4.45°,溶胀度为3,Col_FF组瞬间表面接触角为98.98°±5.81°,溶胀度为1,Col_NFM组的亲水性和溶胀性能更佳。SEM和LSM结果显示,Col_NFM组hDPCs表现为不规则多角形,呈三维生长,Col_FF组细胞在二维平面上呈纺锤形生长。CCK-8结果显示,hDPCs在Col_NFM支架上增殖活性更高。在诱导14 d后,Col_NFM组成牙本质分化相关基因表达水平较Col_FF组显著升高(P<0.05),茜素红染色也更深。结论:Col_NFM具有纳米尺度的微观结构,并具备良好的亲水性和溶胀性能,相较于Col_FF,hDPCs在Col_NFM表面表现出更好的黏附、增殖和分化性能。

关键词: 胶原, 静电纺丝, 牙髓再生, 纳米纤维, 支架

Abstract:

Objective: To compare cell adhesion, proliferation and odontoblastic differentiation of human dental pulp cells (hDPCs) on electrospun collagen nanofibrous matrix (Col_NFM) with that on collagen flat film (Col-FF), to investigate the biological effect of collagen nanofibrous matrix on hDPCs. Methods: The surface morphology of the two different collagen scaffold was analyzed by scanning electron microscopy (SEM), and the contact angle and the swelling ratio were also measured. Then hDPCs were implanted on the two different collagen scaffolds, the cell morphology was observed using SEM and laser scanning microscope (LSM), and cell proliferation was evaluated by the CCK-8 assay. After hDPCs cultured on the two different collagen scaffold with odontoblastic medium for 14 days, the expression of odontoblastic differentiation related genes was detected by real-time PCR, and alizarin red staining was used to test the formation of mineralized nodules. Results: From the SEM figures, the fibers’ diameter of Col_NFM was (884±159) nm, and there were abundant three dimensional connected pore structures between the fibers of Col_NFM, while the surface of Col_FF was completely flat without pore structure. The contact angle at 0 s of Col_NFM was 85.03°±4.45°, and that of Col_FF was 98.98°±5.81°. The swelling ratio of Col_NFM was approximately 3 folds compared with dry weight sample, while that of Col_FF was just 1 fold. Thus Col_NFM indicated better hydrophilicity and swelling property. SEM and LSM showed that hDPCs on Col_NFM presented an irregular and highly branched phenotype, and could penetrate into the nanofibrous scaffold. In contrast, the cells were spread only on the surface of Col_FF with a spindle-shaped morphology. CCK-8 assays showed that hDPCs on Col_NFM showed higher proliferation rate than on Col_FF. After hDPCs were cultured on the two different collagen scaffolds with odontoblastic medium for 14 days, more expressions of odontoblastic differentiation related genes, such as dentin sialophosphoprotein (DSPP) and dentin matrix proten-1 (DMP1) were determined in Col_NFM group (P<0.05), and more mineralization depositions were also observed in Col_NFM group according to the results of alizarin red staining. Conclusion: Col_NFM with nanoscale microstructure achieves better hydrophilic and swelling properties than Col_FF, and hDPCs cultured with Col_NFM present higher activity on cell adhesion, proliferation and odontoblastic differentiation.

Key words: Collagen, Electrospinning, Pulp regeneration, Nanofibers, Scaffold

中图分类号: 

  • R781.3

表1

引物序列"

Gene Gene sequence (5'-3')
DSPP Forward: ATATTGAGGGCTGGAATGGGGA
Reverse: TTTGTGGCTCCAGCATTGTCA
DMP1 Forward: AGGAAGTCTCGCATCTCAGAG
Reverse: TGGAGTTGCTGTTTTCTGTAGAG
GAPDH Forward: GAAGGTGAAGGTCGGAGTC
Reverse: GAGATGGTGATGGGATTTC

图1

支架的扫描电镜图片"

图2

支架表面接触角"

图3

支架溶胀度"

图4

扫描电镜观察不同支架表面hDPCs的生长形态"

图5

激光共聚焦显微镜观察不同支架表面hDPCs的生长形态"

图6

hDPCs在不同支架上的增殖情况"

图7

实时荧光定量PCR检测hDPCs诱导14天后DSPP、DMP1基因相对表达情况"

图8

诱导第14天后茜素红染色结果"

[1] Lysaght MJ, Reyes J . The growth of tissue engineering[J]. Tissue Eng, 2001,7(5):485-493.
doi: 10.1089/107632701753213110 pmid: 11694183
[2] Malhotra N, Kundabala M, Acharya S. Current strategies and applications of tissue engineering in dentistry: a review part 1 [J]. Dent Update, 2009, 36(9): 577- 579, 581-582.
pmid: 20099610
[3] Wiesmann HP, Meyer U, Plate U , et al. Aspects of collagen mineralization in hard tissue formation[J]. Int Rev Cytol, 2005,242:121-156.
doi: 10.1016/S0074-7696(04)42003-8 pmid: 15598468
[4] Sumita Y, Honda MJ, Ohara T , et al. Performance of collagen sponge as a 3-D scaffold for tooth-tissue engineering[J]. Biomaterials, 2006,27(17):3238-3248.
doi: 10.1016/j.biomaterials.2006.01.055 pmid: 16504285
[5] Prescott RS, Alsanea R, Fayad MI , et al. In vivo generation of dental pulp-like tissue by using dental pulp stem cells, a collagen scaffold, and dentin matrix protein 1 after subcutaneous transplantation in mice[J]. J Endod, 2008,34(4):421-426.
doi: 10.1016/j.joen.2008.02.005 pmid: 18358888
[6] Kim NR, Lee DH, Chung PH , et al. Distinct differentiation pro-perties of human dental pulp cells on collagen, gelatin, and chitosan scaffolds[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 2009,108(5):94-100.
doi: 10.1016/j.tripleo.2009.07.031 pmid: 19836718
[7] Strom SC, Michalopoulos G . Collagen as a substrate for cell growth and differentiation[J]. Methods Enzymol, 1982,82(Pt A):544-555.
doi: 10.1016/0076-6879(82)82086-7
[8] Grinnell F, Bennett MH . Ultrastructural studies of cell: collagen interactions[J]. Methods Enzymol, 1982,82(Pt A):535-544.
doi: 10.1016/0076-6879(82)82085-5
[9] Elsdale T, Bard J . Collagen substrata for studies on cell behavior[J]. J Cell Biol, 1972,54(3):626-637.
doi: 10.1083/jcb.54.3.626
[10] Woo KM, Chen VJ, Ma PX . Nano-fibrous scaffolding architecture selectively enhances protein adsorption contributing to cell attachment[J]. J Biomed Mater Res A, 2003,67(2):531-537.
doi: 10.1002/jbm.a.10098 pmid: 14566795
[11] Wang J, Ma H, Jin X , et al. The effect of scaffold architecture on odontogenic differentiation of human dental pulp stem cells[J]. Biomaterials, 2011,32(31):7822-7830.
doi: 10.1016/j.biomaterials.2011.04.034 pmid: 3159766
[12] Kuang R, Zhang Z, Jin X , et al. Nanofibrous spongy microspheres enhance odontogenic differentiation of human dental pulp stem cells[J]. Adv Healthc Mater, 2015,4(13):1993-2000.
doi: 10.1002/adhm.201500308 pmid: 26138254
[13] Kwon YS, Lee SH, Hwang YC , et al. Behaviour of human dental pulp cells cultured in a collagen hydrogel scaffold cross-linked with cinnamaldehyde[J]. Int Endod J,2017,50(1):58-66.
doi: 10.1111/iej.12592 pmid: 26650820
[14] Coyac BR, Chicatun F, Hoac B , et al. Mineralization of dense collagen hydrogel scaffolds by human pulp cells[J]. J Dent Res, 2013,92(7):648-654.
doi: 10.1177/0022034513488599 pmid: 23632809
[15] Pan S, Dangaria S, Gopinathan G , et al. SCF promotes dental pulp progenitor migration, neovascularization, and collagen remo-deling: potential applications as a homing factor in dental pulp regeneration[J]. Stem Cell Rev, 2013,9(5):655-667.
doi: 10.1007/s12015-013-9442-7 pmid: 23703692
[16] Kim JJ, Bae WJ, Kim JM , et al. Mineralized polycaprolactone nanofibrous matrix for odontogenesis of human dental pulp cells[J]. J Biomater Appl, 2014,28(7):1069-1078.
doi: 10.1177/0885328213495903
[17] Liu H, Ding X, Zhou G , et al. Electrospinning of nanofibers for tissue engineering applications[J]. J Nanomater, 2013,47(2013):63-72.
doi: 10.1155/2013/495708
[18] Huang GT, Gronthos S, Shi S . Mesenchymal stem cells derived from dental tissues vs. those from other sources: their biology and role in regenerative medicine[J]. J Dent Res, 2009,88(9):792-806.
doi: 10.1177/0022034509340867 pmid: 2830488
[19] Kumar G, Tison CK, Chatterjee K , et al. The determination of stem cell fate by 3D scaffold structures through the control of cell shape[J]. Biomaterials, 2011,32(35):9188-9196.
doi: 10.1016/j.biomaterials.2011.08.054 pmid: 3428125
[20] Chen CS, Mrksich M, Huang S , et al. Geometric control of cell life and death[J]. Science, 1997,276(5317):1425-1428.
doi: 10.1126/science.276.5317.1425
[21] Folkman J, Moscona A . Role of cell shape in growth control[J]. Nature, 1978,273(5661):345-349.
[22] McBeath R, Pirone DM, Nelson CM , et al. Cell shape, cytoske-letal tension, and RhoA regulate stem cell lineage commitment[J]. Developmental Cell, 2004,6(4):483-495.
doi: 10.1016/S1534-5807(04)00075-9
[23] Lee JH, Lee JW, Khang G , et al. Interaction of cells on chargeable functional group gradient surfaces[J]. Biomaterials, 1997,18(4):351-358.
doi: 10.1016/S0142-9612(96)00128-7
[24] Khorasani MT, Mirzadeh H, Irani S . Plasma surface modification of poly (-lactic acid) and poly (lactic-co-glycolic acid) films for improvement of nerve cells adhesion[J]. Radiat Phys Chem, 2008,77(3):280-287.
doi: 10.1016/j.radphyschem.2007.05.013
[1] 马欣蓉,朱晓鸣,李静,李德利,李和平,谭建国. 新型大气压冷等离子体射流处理对牙本质胶原纤维交联化的影响[J]. 北京大学学报(医学版), 2022, 54(1): 83-88.
[2] 朱正达,高岩,何汶秀,方鑫,刘洋,魏攀,闫志敏,华红. 红色诺卡氏菌细胞壁骨架治疗糜烂型口腔扁平苔藓的疗效及安全性[J]. 北京大学学报(医学版), 2021, 53(5): 964-969.
[3] 庄金满,李天润,李选,栾景源,王昌明,冯琦琛,韩金涛. Rotarex 旋切导管在下肢动脉硬化闭塞症支架内再狭窄中的应用[J]. 北京大学学报(医学版), 2021, 53(4): 740-743.
[4] 董文敏,王明瑞,胡浩,王起,许克新,徐涛. Allium覆膜金属输尿管支架长期留置治疗输尿管-回肠吻合口狭窄的初期临床经验及随访结果[J]. 北京大学学报(医学版), 2020, 52(4): 637-641.
[5] 曹春玲,杨聪翀,屈小中,韩冰,王晓燕. 可注射羟乙基壳聚糖基水凝胶理化性能及其对人牙髓细胞增殖和成牙本质向分化的作用[J]. 北京大学学报(医学版), 2020, 52(1): 10-17.
[6] 贾子昌,李选,郑梅,栾景源,王昌明,韩金涛. 复合手术治疗无残端的症状性长段颈内动脉慢性闭塞[J]. 北京大学学报(医学版), 2020, 52(1): 177-180.
[7] 赵海燕,樊东升,韩金涛. 重度颈内动脉狭窄伴未破裂动脉瘤的治疗策略[J]. 北京大学学报(医学版), 2019, 51(5): 829-834.
[8] 贾子昌,卞焕菊,李选,栾景源,王昌明,刘启佳,韩金涛. Neuroform EZ支架在治疗复杂症状性颅内动脉重度狭窄中的应用[J]. 北京大学学报(医学版), 2019, 51(5): 835-839.
[9] 贾子昌,卞焕菊,韩金涛,赵海燕,栾景源,王昌明,李选. 颈动脉支架成形术后脑高灌注综合征[J]. 北京大学学报(医学版), 2019, 51(4): 733-736.
[10] 王平,宋婧,方翔宇,李鑫,刘栩,贾园,栗占国,胡凡磊. 成红细胞样Ter细胞在胶原诱导性关节炎发病中的作用[J]. 北京大学学报(医学版), 2019, 51(3): 445-450.
[11] 贾子昌,李选,李小刚,曾祥柱,栾景源,王昌明,韩金涛. 机械取栓治疗急性缺血性脑卒中单中心研究[J]. 北京大学学报(医学版), 2019, 51(2): 256-259.
[12] 李榕,陈科龙,王勇,刘云松,周永胜,孙玉春. 骨组织工程支架3D打印系统的建立与支架宏微结构精度的可控性评价[J]. 北京大学学报(医学版), 2019, 51(1): 115-119.
[13] 朱晓鸣,齐璇,李德利,张玉玮,李和平,谭建国. 不同温度新型大气压冷等离子体处理对牙本质粘接强度的影响[J]. 北京大学学报(医学版), 2019, 51(1): 43-48.
[14] 冯琦琛,李选,栾景源,王昌明,李天润. 肾滤过分数评价肾动脉支架植入术对动脉硬化性肾动脉狭窄的治疗效果[J]. 北京大学学报(医学版), 2017, 49(1): 158-163.
[15] 邓晓莉,钟丽君,孙琳,李常虹,刘湘源. 抗collectin 11抗体在系统性红斑狼疮诊断中的意义[J]. 北京大学学报(医学版), 2016, 48(6): 982-986.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田增民, 陈涛, Nanbert ZHONG, 李志超, 尹丰, 刘爽. 神经干细胞移植治疗遗传性小脑萎缩的临床研究(英文稿)[J]. 北京大学学报(医学版), 2009, 41(4): 456 -458 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[4] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[5] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[6] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[7] 董稳, 刘瑞昌, 刘克英, 关明, 杨旭东. 氯诺昔康和舒芬太尼用于颌面外科术后自控静脉镇痛的比较[J]. 北京大学学报(医学版), 2009, 41(1): 109 -111 .
[8] 祁琨, 邓芙蓉, 郭新彪. 纳米二氧化钛颗粒对人肺成纤维细胞缝隙连接通讯的影响[J]. 北京大学学报(医学版), 2009, 41(3): 297 -301 .
[9] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .
[10] 李伟军, 邢晓芳, 曲立科, 孟麟, 寿成超. PRL-3基因C104S位点突变体和CAAX缺失体的构建及表达[J]. 北京大学学报(医学版), 2009, 41(5): 516 -520 .