北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (3): 451-456. doi: 10.19723/j.issn.1671-167X.2020.03.009

• 论著 • 上一篇    下一篇

纳米二氧化钛与葡萄糖亚慢性联合经口暴露对幼年大鼠血清叶酸和维生素B12水平的影响

陈章健1,韩硕1,郑湃1,周淑佩2,贾光1,()   

  1. 1. 北京大学公共卫生学院劳动卫生与环境卫生学系,北京 100191
    2. 北京大学医学部实验动物科学部,北京 100191
  • 收稿日期:2019-12-12 出版日期:2020-06-18 发布日期:2020-06-30
  • 通讯作者: 贾光 E-mail:jiaguangjia@bjmu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC1600204);国家自然科学基金(81703257)

Effect of subchronic combined oral exposure of titanium dioxide nanoparticles and glucose on levels of serum folate and vitamin B12 in young SD rats

Zhang-jian CHEN1,Shuo HAN1,Pai ZHENG1,Shu-pei ZHOU2,Guang JIA1,()   

  1. 1. Department of Occupational and Enviromental Health Sciences, Peking University School of Public Health, Beijing 100191, China
    2. Department of Laboratory Animal Science, Peking University Health Science Center, Beijing 100191, China
  • Received:2019-12-12 Online:2020-06-18 Published:2020-06-30
  • Contact: Guang JIA E-mail:jiaguangjia@bjmu.edu.cn
  • Supported by:
    National Key Research and Develop Program of the Ministry of Science and Technology of China(2017YFC1600204);National Natural Science Foundation of China(81703257)

摘要:

目的 探讨纳米二氧化钛与葡萄糖亚慢性联合暴露对幼年大鼠血清叶酸和维生素B12的影响。方法 对实验所用纳米二氧化钛的粒径、形状、晶型和溶液体系中的团聚程度等物理化学性质进行详细表征。80只4周龄清洁级SD大鼠按体质量随机分为8组(每组10只,雌雄各半)。每天灌胃给予0、2、10、50 mg/kg纳米二氧化钛,分别加或不加1.8 g/kg葡萄糖。染毒90 d后进行血清叶酸和维生素B12含量检测。结果 纳米二氧化钛晶型为锐钛矿,近球形,平均粒径为(24±5) nm。在雄性幼年大鼠中,与对照组相比,纳米二氧化钛(10 mg/kg)加葡萄糖染毒可导致血清叶酸浓度明显增加,差异具有统计学意义(P<0.05)。在雌性和雄性幼年大鼠中,与单纯葡萄糖(1.8 g/kg)染毒组相比,高剂量纳米二氧化钛(50 mg/kg)加葡萄糖可导致血清叶酸浓度明显降低,差异具有统计学意义(P<0.05)。经过联合作用分析,纳米二氧化钛与葡萄糖联合暴露对雌性幼年SD大鼠血清叶酸浓度的影响存在明显拮抗作用。纳米二氧化钛与葡萄糖联合暴露对幼年SD大鼠血清维生素B12浓度的影响较小,未见明显交互作用。仅发现与单纯葡萄糖(1.8 g/kg)染毒组相比,雄性大鼠低剂量(2 mg/kg)纳米二氧化钛加葡萄糖染毒组血清维生素B12浓度明显上升,差异具有统计学意义(P<0.05)。结论 纳米二氧化钛和葡萄糖亚慢性联合经口暴露可以对幼年SD大鼠血清叶酸浓度产生影响,两者存在拮抗作用。

关键词: 叶酸, 纳米二氧化钛, 葡萄糖, 大鼠, Sprague-Dawle, 维生素B12

Abstract:

Objective: To explore the effect of subchronic combined oral exposure of titanium dioxide nanoparticles and glucose on levels of serum folate and vitamin B12 in young SD rats.Methods: At first, the physical and chemical properties of titanium dioxide nanoparticles, such as particle size, shape, crystal form and agglomeration degree in solution system, were characterized in detail. Eighty 4-week-old young SD rats were randomly divided into 8 groups (10 rats in each group, half male and half female). The rats were exposed to titanium dioxide nanoparticles through intragastric administration at 0, 2, 10 and 50 mg/kg body weight with or without 1.8 g/kg glucose daily for 90 days. At last, the concentrations of serum folate and vitamin B12 were detected.Results: Titanium dioxide nanoparticles were anatase crystals, closely spherical shape, with an average particle size of (24±5) nm. In male young rats, compared with the control group, the serum folate concentration was significantly increased when exposed to titanium dioxide nanoparticles (10 mg/kg) and glucose. The difference was statistically significant (P<0.05). However, in female and male young rats, compared with glucose (1.8 g/kg) exposure group, titanium dioxide nanoparticles (50 mg/kg) and glucose significantly reduced the serum folate concentration. The difference was statistically significant (P<0.05). Through statistical analysis of factorial design and calculation of interaction, obvious antagonistic effect was observed between titanium dioxide nanoparticles and glucose on the serum folate concentration in the young female SD rats. The combined oral exposure of titanium dioxide nanoparticles and glucose had little effect on the concentration of serum vitamin B12 in the young SD rats, with no significant interaction between the two substances. It was only found that titanium dioxide nanoparticles (2 mg/kg) and glucose significantly increased the serum vitamin B12 concentration, compared with glucose (1.8 g/kg) exposure group. The difference was statistically significant (P<0.05).Conclusion: Subchronic combined oral exposure of titanium dioxide nanoparticles and glucose had an obvious antagonistic effect on serum folate concentrations in young SD rats.

Key words: Folic acid, Titanium dioxide nanoparticles, Glucose, Rats, Sprague-Dawley, Vitamin B12

中图分类号: 

  • R994.4

表1

本实验所用纳米二氧化钛的物理化学性质"

Property TiO2 NPs
Shape Spherical
Average diameter (24±5) nm
Crystal structure Anatase
Purity 99.90%
Hydrodynamic diameter in H2O 40.8 nm
Hydrodynamic diameter in glucose solution 74.5 nm
Zeta potential in H2O 11.09 mV
Zeta potential in glucose solution 4.62 mV

图1

纳米二氧化钛和葡萄糖联合经口暴露90 d对SD大鼠体质量的影响(x?±s,n=5)"

图2

纳米二氧化钛和葡萄糖联合经口暴露90 d对SD大鼠血清叶酸浓度的影响(x?±s,n=5)"

图3

纳米二氧化钛和葡萄糖联合经口暴露90 d对SD大鼠血清维生素B12浓度的影响(x?±s,n=5)"

图4

纳米二氧化钛和葡萄糖经口暴露90 d对SD大鼠血清叶酸浓度的联合作用(x?±s,n=5)"

[1] Lim JH, Bae D, Fong A. Titanium dioxide in food products: quantitative analysis using ICP-MS and Raman spectroscopy[J]. J Agric Food Chem, 2018,66(51):13533-13540.
[2] FDA. Listing of color additives exempt from certification. In Code of Federal Regulations Title 21-Food and Drugs. 21 CFR 73.575. Washington, DC: US Government Printing Office, 2002.
[3] Singh T, Shukla S, Kumar P, et al. Application of nanotechnology in food science: Perception and overview[J]. Front Microbiol, 2017(8):1501.
[4] Yang Y, Doudrick K, Bi XY, et al. Characterization of food-grade titanium dioxide: The presence of nanosized particles[J]. Environ Sci Technol, 2014,48(11):6391-6400.
[5] Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products[J]. Environ Sci Technol, 2012,46(4):2242-2250.
pmid: 22260395
[6] Winkler HC, Notter T, Meyer U, et al. Critical review of the safety assessment of titanium dioxide additives in food[J]. J Nanobiotechnology, 2018,16(1):51.
pmid: 29859103
[7] Ruiz PA, Moron B, Becker HM, et al. Titanium dioxide nanoparticles exacerbate DSS-induced colitis: Role of the NLRP3 inflammasome[J]. Gut, 2017,66(7):1216-1224.
pmid: 26848183
[8] Shrivastava R, Raza S, Yadav A, et al. Effects of sub-acute exposure to TiO2, ZnO and Al2O3 nanoparticles on oxidative stress and histological changes in mouse liver and brain[J]. Drug Chem Toxicol, 2014,37(3):336-347.
[9] Rollerova E, Tulinska J, Liskova A, et al. Titanium dioxide nanoparticles: Some aspects of toxicity/focus on the development[J]. Endocr Regul, 2015,49(2):97-112.
doi: 10.4149/endo_2015_02_97 pmid: 25960011
[10] Ervin RB, Kit BK, Carroll MD, et al. Consumption of added sugar among U.S. children and adolescents, 2005-2008[J]. NCHS data brief, 2012(87):1-8.
[11] Chen Z, Zhou D, Wang Y, et al. Combined effect of titanium dioxide nanoparticles and glucose on the cardiovascular system in young rats after oral administration[J]. J Appl Toxicol, 2019,39(4):590-602.
doi: 10.1002/jat.3750 pmid: 30427543
[12] Czajka M, Sawicki K, Sikorska K, et al. Toxicity of titanium dioxide nanoparticles in central nervous system[J]. Toxicol In Vitro, 2015,29(5):1042-1052.
[13] Fan J, Ye J, Kamphorst JJ, et al. Quantitative flux analysis reveals folate-dependent NADPH production[J]. Nature, 2014,510(7504):298-302.
[14] Chen Z, Wang Y, Zhuo L, et al. Interaction of titanium dioxide nanoparticles with glucose on young rats after oral administration[J]. Nanomedicine, 2015,11(7):1633-1642.
[15] Wang Y, Chen ZJ, Ba T, et al. Susceptibility of young and adult rats to the oral toxicity of titanium dioxide nanoparticles[J]. Small, 2013,9(9-10):1742-1752.
pmid: 22945798
[16] Chen Z, Zhou D, Zhou S, et al. Gender difference in hepatic toxicity of titanium dioxide nanoparticles after subchronic oral exposure in Sprague-Dawley rats[J]. J Appl Toxicol, 2019,39(5):807-819.
doi: 10.1002/jat.3769 pmid: 30644115
[17] Chen ZJ, Wang Y, Wang X, et al. Effect of titanium dioxide nanoparticles on glucose homeostasis after oral administration[J]. J Appl Toxicol, 2018,38(6):810-823.
pmid: 29350773
[1] 陈章健,韩硕,郑湃,贾光. 锐钛矿型纳米二氧化钛经口暴露90天对Sprague-Dawley大鼠血常规指标的影响[J]. 北京大学学报(医学版), 2021, 53(6): 1205-1208.
[2] 王贵红,左婷,李然,左正才. 瑞巴派特在大鼠痛风性关节炎急性发作中的作用[J]. 北京大学学报(医学版), 2021, 53(4): 716-720.
[3] 尹雪倩, 张晓玄, 文婧, 刘思奇, 刘欣然, 周若宇, 王军波. 荞麦、燕麦、豌豆复配对糖尿病大鼠血糖的影响[J]. 北京大学学报(医学版), 2021, 53(3): 447-452.
[4] 白枫,何倚帆,牛亚楠,杨若娟,曹静. 超细颗粒物对大鼠离体灌注心脏功能的影响[J]. 北京大学学报(医学版), 2021, 53(2): 240-245.
[5] 周迪,陈章健,胡贵平,阎腾龙,龙昌茂,冯慧敏,贾光. 纳米二氧化钛亚急性经口暴露对大鼠氧化/抗氧化生物标志和炎性因子的影响[J]. 北京大学学报(医学版), 2020, 52(5): 821-827.
[6] 金蕾,王程,张杰,孟文颖,张佳煜,于锦慧,蔺桂银,佟明坤,靳蕾. 妇女围受孕期叶酸服用情况及其对胎儿神经管缺陷的预防效果[J]. 北京大学学报(医学版), 2020, 52(4): 719-725.
[7] 韩硕,陈章健,周迪,郑湃,张家赫,贾光. 纳米二氧化钛经口暴露90天对大鼠粪便代谢组的影响[J]. 北京大学学报(医学版), 2020, 52(3): 457-463.
[8] 郭成成,张晓圆,玉应香,谢岚,常翠青. 绿原酸对高脂饲料诱导的肥胖大鼠糖耐量及其曲线特征的影响[J]. 北京大学学报(医学版), 2020, 52(2): 269-274.
[9] 白珊珊,莫思怡,徐啸翔,刘云,谢秋菲,曹烨. 大鼠咬合干扰致口颌面痛敏的自我赏罚实验行为学特点[J]. 北京大学学报(医学版), 2020, 52(1): 51-57.
[10] 何姣,袁戈恒,张俊清,郭晓蕙. 早期糖尿病周围神经病变大鼠模型的建立[J]. 北京大学学报(医学版), 2019, 51(6): 1150-1154.
[11] 王伟,侯进,黄文强. 运动导致兴奋脑区组织液流动一过性加速[J]. 北京大学学报(医学版), 2019, 51(2): 206-209.
[12] 袁蒙蒙,王锰,刘俊义,张志丽. 基于4-氨基-5-甲酰基-8,10-二去氮杂四氢叶酸二乙酯侧链的水解反应条件优化[J]. 北京大学学报(医学版), 2017, 49(4): 714-718.
[13] 张永亮,陈章健,陈实,卓琳,贾光,王云. 体外翻转肠囊法研究纳米二氧化钛对幼年大鼠小肠葡萄糖吸收的影响[J]. 北京大学学报(医学版), 2017, 49(3): 376-382.
[14] 王玉洁,郭向阳,王军. 重复异丙酚麻醉对新生大鼠海马细胞凋亡及远期学习记忆能力的影响[J]. 北京大学学报(医学版), 2017, 49(2): 310-314.
[15] 武东,孙琳,李常虹,杨麟,赵金霞,刘湘源. 抗瓜氨酸化葡萄糖-6-磷酸异构酶多肽抗体的检测及其在类风湿关节炎中的意义[J]. 北京大学学报(医学版), 2016, 48(6): 937-941.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[3] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[4] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[5] 赵奇, 薛世华, 刘志勇, 吴凌云. 同向施压测定自酸蚀与全酸蚀粘接系统粘接强度[J]. 北京大学学报(医学版), 2010, 42(1): 82 -84 .
[6] 林红, 王玉凤, 吴野平. 学校生活技能教育对小学三年级学生行为问题影响的对照研究[J]. 北京大学学报(医学版), 2007, 39(3): 319 -322 .
[7] 丰雷, 程嘉, 王玉凤. 注意缺陷多动障碍儿童的运动协调功能[J]. 北京大学学报(医学版), 2007, 39(3): 333 -336 .
[8] 李岳玲, 钱秋瑾, 王玉凤. 儿童注意缺陷多动障碍成人期预后及其预测因素[J]. 北京大学学报(医学版), 2007, 39(3): 337 -340 .
[9] . 书讯[J]. 北京大学学报(医学版), 2007, 39(3): 225 -328 .
[10] 牟向东, 王广发, 刁小莉, 阙呈立. 肺黏膜相关淋巴组织型边缘区B细胞淋巴瘤一例[J]. 北京大学学报(医学版), 2007, 39(4): 346 -350 .