北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (1): 146-152. doi: 10.19723/j.issn.1671-167X.2022.01.023

• 论著 • 上一篇    下一篇

动态导航下不同深度环钻定位精确度的体外评价

刘思民1,赵一姣2,王晓燕1,王祖华1,()   

  1. 1.北京大学口腔医学院·口腔医院 牙体牙髓科,北京 100081
    2.北京大学口腔医学院·口腔医院 口腔医学数字化研究中心,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔数字化医疗技术和材料国家工程实验室,口腔数字医学北京市重点实验室,国家卫生健康委员会口腔医学计算机应用工程技术研究中心,北京 100081
  • 收稿日期:2021-10-09 出版日期:2022-02-18 发布日期:2022-02-21
  • 通讯作者: 王祖华 E-mail:wangzuhua@pkuss.bjmu.edu.cn

In vitro evaluation of positioning accuracy of trephine bur at different depths by dynamic navigation

LIU Si-min1,ZHAO Yi-jiao2,WANG Xiao-yan1,WANG Zu-hua1,()   

  1. 1. Department of Conservative Dentistry and Endodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China
    2. Center for Digital Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology & NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing 100081, China
  • Received:2021-10-09 Online:2022-02-18 Published:2022-02-21
  • Contact: Zu-hua WANG E-mail:wangzuhua@pkuss.bjmu.edu.cn

摘要:

目的: 通过3D打印的体外模型评价使用动态导航系统引导下环钻在不同深度定位的精确度。方法: 设计并使用3D打印技术以Veroclear树脂制作标准化模型,分别在距离模型外表面5、10、15 mm深度预留半球型空腔。拍摄锥形束CT(cone beam CT,CBCT)并将数据导入动态导航软件中(迪凯尔公司,中国),建立导航路径规划。在导航引导下使用直径4.5 mm的环钻完成入路操作,每个深度完成10例入路。拍摄术后模型的CBCT,重建导航下的入路轨迹,并与设计路径进行对比,计算实际动态导航路径与设计路径之间的二维距离偏差、深度偏差、三维距离偏差及角度偏差。结果: 5 mm深度下动态导航终点位置与目标位置的二维距离偏差为(0.37±0.06) mm、深度偏差为(0.06±0.05) mm、三维距离偏差为(0.38±0.07) mm、角度偏差为2.46°±0.54°;10 mm深度下动态导航终点位置与目标位置的4项偏差分别为(0.44±0.05) mm、(0.16±0.06) mm、(0.47±0.05) mm、2.45°±1.21°;15 mm深度下动态导航终点位置与目标位置的4项偏差分别为(0.52±0.14) mm、(0.16±0.07) mm、(0.55±0.15) mm、3.25°±1.22°。随着进入深度的增加,动态导航系统的三维及深度精确度均下降(P<0.01),定位角度偏差与进入深度无关(P>0.01)。结论: 动态导航技术在15 mm的深度范围内仍可以达到较高的定位精确度,但其偏差值随着进入深度的增加而增大。

关键词: 动态导航, 打印, 三维, 牙模型, 定位标记

Abstract:

Objective: To evaluate the accuracy of trephine bur drilling at different depths guided by dynamic navigation system in 3D printing in vitro model. Methods: A model at the depth of 5 mm, 10 mm, and 15 mm from the outer surface of which hemispherical cavities was reserved and the 3D printing technology was used to make the standardized model with Veroclear resin. The cone beam CT (CBCT) was taken and the data were imported into the dynamic navigation software (DCARER, China) to establish navigation path programming. Under the guidance of dynamic navigation, a trephine bur with a diameter of 4.5 mm was used to complete the access operation. At each depth, 10 approaches were completed. The postoperative model CBCT was taken. The approach trajectory under navigation was reconstructed and compared with the designed path. The two-dimensional distance deviation, depth deviation, three-dimensional distance deviation, and angle deviation between the actually prepared path and the designed path were calculated. Results: At the depth of 5 mm, the two-dimensional distance deviation between the end position of the prepared path and the designed path was (0.37±0.06) mm, the depth deviation was (0.06±0.05) mm, the three-dimensional distance deviation was (0.38±0.07) mm, and the angle deviation was 2.46°±0.54°; At the depth of 10 mm, the four deviations between the end position of prepared path and the designed path were (0.44±0.05) mm, (0.16±0.06) mm, (0.47±0.05) mm, and 2.45°±1.21°, respectively; At the depth of 15 mm, the four deviations were (0.52±0.14) mm, (0.16±0.07) mm, (0.55±0.15) mm, and 3.25°±1.22°, respectively. With the increase of entry depth, the three-dimensional and depth accuracy of dynamic navigation system decreased (P<0.01), and the positioning angle deviation had no relation with the entry depth (P>0.01). Conclusion: Dynamic navigation technology can achieve high positioning accuracy in the depth range of 15 mm, but its deviation increases with the increase of entry depth.

Key words: Dynamic navigation, Printing, three-dimensional, Dental models, Fiducial markers

中图分类号: 

  • R783.3

图1

导航入路的设计"

图2

动态导航前的准备"

图3

动态导航下的操作"

图4

定位精度与角度偏差的评估"

表1

不同进入深度下导航终点的位置偏差与角度偏差"

Deviations Overall data Depth F P
5 mm 10 mm 15 mm
2D distance deviation/mm, x ?±s 0.44±0.12 0.37±0.06 0.44±0.05 0.52±0.14 5.751 0.008
Depth deviation/mm, $\bar{x}\pm s$ 0.13±0.78 0.06±0.05 0.16±0.06 0.16±0.07 6.915 0.004
3D distance deviation/mm, $\bar{x}\pm s$ 0.47±0.12 0.38±0.07 0.47±0.05 0.55±0.15 4.509 0.020
Angle deviation/(°), $\bar{x}\pm s$ 2.72±1.12 2.46±0.54 2.45±1.21 3.25±1.22 1.780 0.188
Initial position deviation/mm, $\bar{x}\pm s$ 0.62±1.73 0.57±0.10 0.55±0.11 0.74±0.20 7.662 0.002

表2

不同进入深度下导航终点位置偏差的LSD事后检验"

Dependent variable Depth of
group 1/mm
Depth of
group 2/mm
P
2D distance deviation
5 10 0.177
5 15 0.002
10 15 0.057
3D distance deviation
5 10 0.071
5 15 0.001
10 15 0.077
Depth deviation
5 10 0.003
5 15 0.002
10 15 0.862
[1] Bobek SL. Applications of navigation for orthognathic surgery[J]. Oral Maxillofac Surg Clin North Am, 2014, 26(4):587-598.
doi: 10.1016/j.coms.2014.08.003
[2] Wadley J, Dorward N, Kitchen N, et al. Pre-operative planning and intra-operative guidance in modern neurosurgery: A review of 300 cases[J]. Ann R Coll Surg Engl, 1999, 81(4):217-225.
[3] Bell RB. Computer planning and intraoperative navigation in orthognathic surgery[J]. J Oral Maxillofac Surg, 2011, 69(3):592-605.
doi: 10.1016/j.joms.2009.06.030
[4] Emery RW, Merritt SA, Lank K, et al. Accuracy of dynamic navigation for dental implant placement-model-based evaluation[J]. J Oral Implantol, 2016, 42(5):399-405.
doi: 10.1563/aaid-joi-D-16-00025
[5] Block MS, Emery RW, Cullum DR, et al. Implant placement is more accurate using dynamic navigation[J]. J Oral Maxillofac Surg, 2017, 75(7):1377-1386.
doi: 10.1016/j.joms.2017.02.026
[6] Zubizarreta-Macho Á, Muñoz AP, Deglow ER, et al. Accuracy of computer-aided dynamic navigation compared to computer-aided static procedure for endodontic access cavities: An in vitro study[J]. J Clin Med, 2020, 9(1):129.
doi: 10.3390/jcm9010129
[7] Dianat O, Nosrat A, Mostoufi B, et al. Accuracy and efficiency of guided root-end resection using a dynamic navigation system: A human cadaver study[J]. Int Endodo J, 2021, 54(5):793-801.
doi: 10.1111/iej.v54.5
[8] Jain SD, Carrico CK, Bermanis I. 3-dimensional accuracy of dynamic navigation technology in locating calcified canals[J]. J Endod, 2020, 46(6):839-845.
doi: 10.1016/j.joen.2020.03.014
[9] Wu D, Zhou L, Yang J, et al. Accuracy of dynamic navigation compared to static surgical guide for dental implant placement[J]. Int J Implant Dent, 2020, 6(1):78.
doi: 10.1186/s40729-020-00272-0
[10] Wei SM, Zhu Y, Wei JX, et al. Accuracy of dynamic navigation in implant surgery: A systematic review and meta-analysis[J]. Clin Oral Implants Res, 2021, 32(4):383-393.
doi: 10.1111/clr.v32.4
[11] Gambarini G, Galli M, Morese A, et al. Precision of dynamic navigation to perform endodontic ultraconservative access cavities: A preliminary in vitro analysis[J]. J Endod, 2020, 46(9):1286-1290.
doi: S0099-2399(20)30385-X pmid: 32553875
[12] Aydemir CA, Arısan V. Accuracy of dental implant placement via dynamic navigation or the freehand method: A split-mouth rando-mized controlled clinical trial[J]. Clin Oral Implants Res, 2020, 31(3):255-263.
[13] Mediavilla Guzmán A, Riad Deglow E, Zubizarreta-Macho Á, et al. Accuracy of computer-aided dynamic navigation compared to computer-aided static navigation for dental implant placement: An in vitro study[J]. J Clin Med, 2019, 8(12):2123.
doi: 10.3390/jcm8122123
[14] Pellegrino G, Taraschi V, Andrea Z, et al. Dynamic navigation: A prospective clinical trial to evaluate the accuracy of implant placement[J]. Int J Comput Dent, 2019, 22(2):139-147.
pmid: 31134220
[15] Hawkins TK, Wealleans JA, Pratt AM, et al. Targeted endodontic microsurgery and endodontic microsurgery: A surgical simulation comparison[J]. Int Endod J, 2020, 53(5):715-722.
doi: 10.1111/iej.13243 pmid: 31674678
[16] Christofzik D, Bartols A, Faheem MK, et al. Shaping ability of four root canal instrumentation systems in simulated 3D-printed root canal models[J]. PLoS One, 2018, 13(8):e0201129.
doi: 10.1371/journal.pone.0201129
[17] Nagy E, Fráter M, Antal M. Guided modern endodontic microsurgery by use of a trephine bur[J]. Orv Hetil, 2020, 161(30):1260-1265.
doi: 10.1556/650.2020.31778
[18] Buniag AG, Pratt AM, Ray JJ. Targeted endodontic microsurgery: A retrospective outcomes assessment of 24 cases[J]. J Endod, 2021, 47(5):762-769.
doi: 10.1016/j.joen.2021.01.007
[19] Collyer J. Stereotactic navigation in oral and maxillofacial surgery[J]. Br J Oral Maxillofac Surg, 2010, 48(2):79-83.
doi: 10.1016/j.bjoms.2009.04.037 pmid: 20061072
[20] Popowicz W, Palatyńska-Ulatowska A, Kohli MR. Targeted endodontic microsurgery: Computed tomography-based guided stent approach with platelet-rich fibrin graft: A report of 2 cases[J]. J Endod, 2019, 45(12):1535-1542.
doi: S0099-2399(19)30626-0 pmid: 31606146
[21] Rismanchian M, Bajoghli F, Gholamreza T, et al. Dental implants: Early versus standard two-stage loading (animal study)[J]. J Oral Implant, 2014, 40(1):84-93.
doi: 10.1563/AAID-JOI-D-10-00202
[22] Gambarini G, Galli M, Stefanelli LV, et al. Endodontic microsurgery using dynamic navigation system: A case report[J]. J Endod, 2019, 45(11):1397-1402.
doi: S0099-2399(19)30544-8 pmid: 31515047
[1] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[2] 孙玉春,郭雨晴,陈虎,邓珂慧,李伟伟. 口腔精准仿生修复技术的自主创新研发与转化[J]. 北京大学学报(医学版), 2022, 54(1): 7-12.
[3] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[4] 邵振兴,宋庆法,赵宇晴,崔国庆. 一种结合线袢固定的关节镜下“嵌入式”喙突移位术:手术技术及术后影像学分析[J]. 北京大学学报(医学版), 2021, 53(5): 896-901.
[5] 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622.
[6] 陈迪,徐翔宇,汪明睿,李芮,臧根奥,张悦,钱浩楠,闫光荣,范田园. 熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价[J]. 北京大学学报(医学版), 2021, 53(2): 348-354.
[7] 黄新瑞,李莎,高嵩. 冷冻电镜成像中噪声的滤波方法进展[J]. 北京大学学报(医学版), 2021, 53(2): 425-433.
[8] 穆海丽,田福聪,王晓燕,高学军. 玻璃体和通用型复合树脂耐磨性的临床对照研究[J]. 北京大学学报(医学版), 2021, 53(1): 120-125.
[9] 岳兆国,张海东,杨静文,侯建霞. 数字化评估CAD/CAM个性化基台与成品基台影响粘接剂残留的体外研究[J]. 北京大学学报(医学版), 2021, 53(1): 69-75.
[10] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[11] 国丹妮,潘韶霞,衡墨笛,屈健,魏秀霞,周永胜. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87.
[12] 李思雨,段雪飞,曹烨. 应用超声器械改善预备体肩台的效果[J]. 北京大学学报(医学版), 2021, 53(1): 88-94.
[13] 邱天成,刘筱菁,薛竹林,李自力. 基于三维动态照相机的正常人面部表情可重复性研究[J]. 北京大学学报(医学版), 2020, 52(6): 1107-1111.
[14] 徐迪,魏冬豪,张亚池,邸萍,林野. 以苄索氯胺和异丙醇为主要有效成分的消毒剂对牙科印模精度的影响[J]. 北京大学学报(医学版), 2020, 52(6): 1112-1116.
[15] 唐祖南,Hui Yuh Soh,胡耒豪,于尧,章文博,彭歆. 混合现实技术在口腔颌面部肿瘤手术中的应用[J]. 北京大学学报(医学版), 2020, 52(6): 1124-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵军. 桡、头动静脉瘘手术改进[J]. 北京大学学报(医学版), 2001, 33(1): 87 -88 .
[2] 王俊梅, 宋明清, 刘斌. 诱生型一氧化氮合酶抑制剂氨基胍对鼠胚发育的影响[J]. 北京大学学报(医学版), 2001, 33(2): 153 -156 .
[3] 王露, 范慧, 莫晓宁, 张颖妹, 魏征人, 钟英成, 黄大无. 重组凋亡相关蛋白PDCD5的纯化及稳定性[J]. 北京大学学报(医学版), 2003, 35(4): 360 -363 .
[4] 王恩博, 崔念晖, 柴原孝彦, 野村武史, 张伟, 俞光岩. 牙源性角化囊性瘤骨吸收相关因子组织化学及免疫组织化学双重染色表达[J]. 北京大学学报(医学版), 2010, 42(1): 85 -89 .
[5] 王莹, 赵红珊, 张晓霞, 冯海兰. 少汗性外胚叶发育不全(HED)家系ED1基因的突变检测[J]. 北京大学学报(医学版), 2003, 35(4): 419 -422 .
[6] 石永进, 虞积仁, 岑溪南, 朱强, 任汉云. 热疗促进HSP70表达对免疫效应细胞杀伤肿瘤的影响[J]. 北京大学学报(医学版), 2005, 37(2): 175 -178 .
[7] 杜淑旭, 张春雨, 金红芳, 杜军保, 唐朝枢. 二氧化硫衍生物舒张大鼠离体主动脉血管环的效应及其机制研究[J]. 北京大学学报(医学版), 2006, 38(6): 581 -585 .
[8] 肖博, 马潞林, 肖春雷, 陆敏, 徐巍, 黄毅, 张树栋, 侯小飞. 热休克蛋白70与体外补充镁在家兔肾缺血再灌注损伤中的保护性作用[J]. 北京大学学报(医学版), 2011, 43(4): 525 -530 .
[9] 刘文华, *, 李丽萍, 周指明, 梁锦峰, 朱瑶, 王钢, 邓少杰. 深圳市宝安区2004年至2011年道路交通事故伤的特点分析[J]. 北京大学学报(医学版), 2012, 44(6): 901 -904 .
[10] 乐迪, 胡文杰, 张豪. 牙冠延长术结合修复治疗诱导上前牙龈乳头生长1例[J]. 北京大学学报(医学版), 2013, 45(2): 312 .