北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (3): 548-551. doi: 10.19723/j.issn.1671-167X.2022.03.022
Jin-feng JIA,Fei LIANG*(),Jian-wei HUANG,Hao WANG,Pu-qing HAN
摘要:
目的: 比较双重血浆分子吸附系统(double plasma molecular absorb system, DPMAS)模式和传统血浆置换(plasma exchange, PE)模式人工肝治疗对患者血小板的影响, 评价重组人血小板生成素(recombinant human thrombopoietin, rhTPO)对此类血小板下降的临床疗效。方法: 选择2018年1月—2020年11月入住广州医科大学附属第五医院的15例DPMAS模式人工肝患者, 纳入DPMAS组, 另选择同期、年龄匹配(±5岁)广州医科大学附属第五医院接受PE的患者15例纳入PE组, 对两组患者进行回顾性分析。比较两组患者人工肝治疗前后的临床症状(如乏力、黄疸、少尿、水肿等)是否改善, 并比较两组患者治疗前后的血常规(特别是血小板)、凝血功能等指标, 记录患者治疗期间重组人血小板生成素的使用情况以及血小板的输注量。结果: DPMAS组患者临床症状改善率为86.67%, 高于PE组, 但差异无统计学意义(P>0.05), 两组患者90 d内转归情况相比, 差异无统计学意义(P>0.05), 治疗后两组白细胞、血红蛋白相比差异无统计学意义(P>0.05), 但DPMAS组患者治疗后血小板水平明显低于治疗前(P < 0.05), 且显著低于治疗后PE组(P < 0.05)。治疗后PE组患者的国际标准化比值得到明显改善(P < 0.05), 但DPMAS组患者国际标准化比值水平变化组间差异无统计学意义(P>0.05)。DPMAS组使用重组人血小板生成素平均约(8.2±3.1) 支, 住院期间输注血小板(1.5±0.3) IU, DMPAS组患者输注重组人血小板生成素后血小板明显上升。结论: 与PE模式相比, DPMAS人工肝模式可降低患者血小板水平, 应用重组人血小板生成素可刺激患者血小板再生, 提高血小板水平, 从而降低因血小板低下而发生的出血风险。
中图分类号:
1 |
Stravitz RT , Lee WM . Acute liver failure[J]. Lancet, 2019, 394 (10201): 869- 881.
doi: 10.1016/S0140-6736(19)31894-X |
2 |
Dong V , Nanchal R , Karvellas CJ . Pathophysiology of acute liver failure[J]. Nutr Clin Pract, 2020, 35 (1): 24- 29.
doi: 10.1002/ncp.10459 |
3 |
Kok B , Dong V , Karvellas CJ . Graft dysfunction and management in liver transplantation[J]. Crit Care Clin, 2019, 35 (1): 117- 133.
doi: 10.1016/j.ccc.2018.08.002 |
4 |
Larsen FS . Artificial liver support in acute and acute-on-chronic liver failure[J]. Curr Opin Crit Care, 2019, 25 (2): 187- 191.
doi: 10.1097/MCC.0000000000000584 |
5 |
Larsen FS , Schmidt LE , Bernsmeier C , et al. High-volume plasma exchange in patients with acute liver failure: An open randomised controlled trial[J]. J Hepatol, 2016, 64 (1): 69- 78.
doi: 10.1016/j.jhep.2015.08.018 |
6 |
Wan YM , Li YH , Xu ZY , et al. Therapeutic plasma exchange versus double plasma molecular absorption system in hepatitis B virus-infected acute-on-chronic liver failure treated by entercavir: A prospective study[J]. J Clin Apher, 2017, 32 (6): 453- 461.
doi: 10.1002/jca.21535 |
7 |
García Martínez JJ , Bendjelid K . Artificial liver support systems: What is new over the last decade[J]. Ann Intensive Care, 2018, 8 (1): 109.
doi: 10.1186/s13613-018-0453-z |
8 |
Huang K , Ji F , Xie Z , et al. Artificial liver support system therapy in acute-on-chronic hepatitis B liver failure: Classification and regression tree analysis[J]. Sci Rep, 2019, 9 (1): 16462.
doi: 10.1038/s41598-019-53029-0 |
9 |
Wu G , Wu D , Lo J , et al. A bioartificial liver support system integrated with a DLM/GelMA-based bioengineered whole liver for prevention of hepatic encephalopathy via enhanced ammonia reduction[J]. Biomater Sci, 2020, 8 (10): 2814- 2824.
doi: 10.1039/C9BM01879D |
10 |
Gundamaraju R , Vemuri R , Chong WC , et al. Bilirubin attenuates ER stress-mediated inflammation, escalates apoptosis and reduces proliferation in the LS174T colonic epithelial cell line[J]. Int J Med Sci, 2019, 16 (1): 135- 144.
doi: 10.7150/ijms.29134 |
11 |
Lee Y , Sugihara K , Gillilland MG 3rd , et al. Hyaluronic acid-bilirubin nanomedicine for targeted modulation of dysregulated intestinal barrier, microbiome and immune responses in colitis[J]. Nat Mater, 2020, 19 (1): 118- 126.
doi: 10.1038/s41563-019-0462-9 |
12 |
Yao J , Li S , Zhou L , et al. Therapeutic effect of double plasma molecular adsorption system and sequential half-dose plasma exchange in patients with HBV-related acute-on-chronic liver failure[J]. J Clin Apher, 2019, 34 (4): 392- 398.
doi: 10.1002/jca.21690 |
13 | 农村立, 郭堑, 韦秋芳, 等. 双重血浆分子吸附系统序贯血浆置换治疗肝衰竭的临床疗效[J]. 现代医药卫生, 2018, 34 (12): 22- 24. |
14 |
Tang B , Huang L , Liu H , et al. Recombinant human thrombo-poietin promotes platelet engraftment after umbilical cord blood transplantation[J]. Blood Adv, 2020, 4 (16): 3829- 3839.
doi: 10.1182/bloodadvances.2020002257 |
15 | Zhang J , Lu Z , Xiao W , et al. Efficacy and safety of recombinant human thrombopoietin on sepsis patients with thrombocytopenia: A systematic review and meta-analysis[J]. Front Pharmacol, 2020, 11 (3): 940. |
[1] | 李建斌,吕梦娜,池强,彭一琳,刘鹏程,吴锐. 干燥综合征患者发生重症新型冠状病毒肺炎的早期预测[J]. 北京大学学报(医学版), 2023, 55(6): 1007-1012. |
[2] | 王梓,张军军,左力,王悦,李文歌,程虹,蔡广研,裴华颖,王利华,周绪杰,师素芳,刘立军,吕继成,张宏. 血浆置换治疗新月体型IgA肾病的有效性分析: 多中心队列研究[J]. 北京大学学报(医学版), 2022, 54(5): 1038-1046. |
[3] | 肖若陶,刘承,徐楚潇,何为,马潞林. 术前血小板参数与局部进展期肾细胞癌预后[J]. 北京大学学报(医学版), 2021, 53(4): 647-652. |
[4] | 石茂静,高伟波,黄文凤,朱继红. 61例血栓性血小板减少性紫癜患者的临床分析[J]. 北京大学学报(医学版), 2021, 53(1): 210-214. |
[5] | 刘滕飞,林涛,任利辉,李广平,彭建军. CMTM5基因与冠心病患者支架内再狭窄发生风险[J]. 北京大学学报(医学版), 2020, 52(5): 856-862. |
[6] | 郭倩, 马晓旭, 高辉, 石连杰, 钟昱超, 谢琳峰, 邵苗, 张学武. Semaphorin 3A在系统性红斑狼疮合并血小板减少患者中的水平及意义[J]. 北京大学学报(医学版), 2020, 52(5): 892-896. |
[7] | 郜洪宇,徐菁玲,孟焕新,和璐,侯建霞. 牙周基础治疗对2型糖尿病伴慢性牙周炎患者红细胞、血小板相关指标的影响[J]. 北京大学学报(医学版), 2020, 52(4): 750-754. |
[8] | 陆瑾慧,钱军,刘鹤,朱俊霞. 富血小板纤维蛋白应用于年轻恒牙牙髓血运重建术的临床研究[J]. 北京大学学报(医学版), 2018, 50(4): 672-679. |
[9] | 谢瑶,郭建群,华瑛,赵卫红,孙青,卢新天. DiGeorge综合征继发自身免疫现象长期随诊1例及文献复习[J]. 北京大学学报(医学版), 2016, 48(6): 1086-1089. |
[10] | 冯雪茹,刘梅林,刘芳,范琰,田清平. 阿司匹林剂量对高龄老年患者血小板功能的影响[J]. 北京大学学报(医学版), 2016, 48(5): 835-840. |
[11] | 刘滕飞,张婧薇,陈夏欢,冯雪茹,柏中胜,刘梅林. 尿11-脱氢血栓素B2水平与2型糖尿病合并冠心病患者阿司匹林临床疗效的相关性研究[J]. 北京大学学报(医学版), 2015, 47(6): 920-924. |
[12] | 刘滕飞,张婧薇,陈夏欢,冯雪茹,柏中胜,刘梅林. CMTM5基因rs723840单核苷酸多态性与阿司匹林治疗下血小板高反应性的相关性研究[J]. 北京大学学报(医学版), 2015, 47(6): 905-909. |
[13] | 夏经钢, 曲杨, 胡少东, 许骥, 尹春琳, 徐东. 替格瑞洛对急性ST段抬高型心肌梗死患者行急诊介入治疗的中期随访[J]. 北京大学学报(医学版), 2015, 47(3): 494-498. |
[14] | 杨盼盼,战园,李盛林,刘鹤. 富血小板纤维蛋白对犬牙髓细胞的体外作用[J]. 北京大学学报(医学版), 2013, 45(5): 787-791. |
[15] | 杨拓, 黄慈波, 赖蓓, 赵丽珂, 陈颖娟, 赵籥陶, 张春媚, 曾小峰. 抗c-mpl抗体在系统性红斑狼疮并发血小板减少中的作用[J]. 北京大学学报(医学版), 2012, 44(2): 221-224. |
|