Journal of Peking University (Health Sciences) ›› 2022, Vol. 54 ›› Issue (2): 346-355. doi: 10.19723/j.issn.1671-167X.2022.02.024

Previous Articles     Next Articles

A cone-beam computed tomography evaluation of three-dimensional changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions

LIU Wei-tao,WANG Yi-ran(),WANG Xue-dong,ZHOU Yan-heng   

  1. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2021-11-09 Online:2022-04-18 Published:2022-04-13
  • Contact: Yi-ran WANG E-mail:elaine1990@163.com
  • Supported by:
    National Program for Multidisciplinary Cooperative Treatment on Major Diseases(PKUSSNMP-202013)

RICH HTML

  

Abstract:

Objective: To assess three-dimensional (3D) changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions (RPE/C) facemask protocol in maxillary retrusive children, and to investigate the relationship between the changes of circum-maxillary sutures and zygomaticomaxillary suture (ZMS) maturation, and to explore the factors of maxilla forward movement with RPE/C and facemask. Methods: In the study (clinical trial registration No: ChiCTR2000034909), 36 maxillary retrusive patients were recruited and block randomized to either the rapid palatal expansion (RPE) group or the RPE/C group. Patients aged 7 to 13 years, Class Ⅲ malocclusion, anterior crossbite, ANB less than 0°, Wits appraisal less than -2 mm, and A-Np less than 0 mm were included in the study. The RPE group received rapid palatal expansion, whereas the RPE/C group received alternate rapid palatal expansions and constrictions, and both with facemask protraction. Head orientations of cone-beam computed tomography (CBCT) images were implemented by Dolphin 11.7. 3D measurements of circummaxillary sutures on CBCT images were evaluated using Mimics 10.01 before (T0) and after treatment (T1). The changes were analyzed with independent t test, two-way ANOVA, Pearson correlation and regression analysis. Results: Two subjects in the RPE/C group were lost to follow-up. A total of 34 patients reached the completion criteria and were analyzed. Compared with the RPE group, sagittal changes of circummaxillary sutures were significantly increased in the RPE/C group with 1.21 mm advancement of zygomaticotemporal suture, 2.20 mm of ZMS, 1.43 mm of zygoma-ticofrontal suture (P<0.05, respectively). Except for the zygomaticotemporal suture, the rest forward sagittal changes of other circummaxillary sutures showed no major difference in terms of the ZMS maturation. The Spearman’s correlation in RPE/C indicated a strong positive correlation of sagittal changes between ZMS and point A (P<0.01) with a regression analysis R 2=42.5%. Conclusion: RPE/C might be more effective on the treatment of maxillary retrusive children. As one of the major mechanical loading sutures during orthopedic therapy, ZMS showed a strong positive correlation with point A on sagittal changes.

Key words: Malocclusion, angle class Ⅲ, Maxilla, Palatal expansion technique, Cranial sutures, Cone-beam computed tomography

CLC Number: 

  • R783.5

Figure 1

Landmarks of measurements A and B are frontal and lateral view of craniofacial landmarks in Mimics 10.01. ZTU, the upper border of zygomaticotemporal suture; ZTL, the lower border of zygomaticotemporal suture; ZMU, the upper border of zygomaticomaxillary suture; ZML, the lower border of zygomaticomaxillary suture; ZFA, the anterior border of zygomaticofrontal suture; ZFP, the posterior border of zygomaticofrontal suture."

Figure 2

CONSORT flow chart of the clinical trial RPE, rapid palatal expansion group; RPE/C, alternating rapid palatal expansion and constriction group; CONSORT, consolidated standards of reporting trials."

Table 1

Comparisons of the demographic data and baseline data between the RPE and RPE/C group at T0"

Items RPE group RPE/C group P value
Gender (female/male) 11/7 10/6 0.934
Zygomaticomaxillary suture maturational stages (B/C) 9/9 8/8 >0.999
Age/years, x -±s 9.80±1.31 10.27±1.56 0.342
A-CRP/mm, x -±s 75.30±4.00 76.99±4.64 0.264
A-HRP/mm, x -±s -27.22±2.51 -27.15±3.36 0.943
ZTM-CRP/mm, x -±s 41.31±2.16 41.49±2.64 0.827
ZTM-HRP/mm, x -±s -2.83±1.23 -2.16±1.89 0.237
ZTM width/mm, x -±s 109.84±6.11 109.83±4.57 0.995
ZMM-CRP/mm, x -±s 64.09±2.89 64.65±3.79 0.625
ZMM-HRP/mm, x -±s -9.76±1.59 -9.24±1.89 0.394
ZMM width/mm, x -±s 67.05±3.81 68.04±3.60 0.444
ZFM-CRP/mm, x -±s 62.20±3.15 62.46±3.00 0.804
ZFM-HRP/mm, x -±s 23.12±1.93 23.47±2.22 0.628
ZFM width/mm, x -±s 93.28±5.25 92.81±3.96 0.770
Protraction time/month, x -±s 8.84±4.19 8.45±2.76 0.750
Total treatment time/month, x -±s 9.57±4.17 10.95±2.82 0.262

Table 2

Comparisons of three-dimensional T1-T0 changes between the RPE and PRE/C group"

Items RPE group/mm, x -±s RPE/C group/mm, x -±s Net differences (95%CI) P value
Sagittal
A-CRP 2.16±1.27 3.06±1.29 -0.91 (-1.80, -0.01) 0.047
ZTM-CRP 0.52±1.10 1.21±0.53 -0.69 (-1.31, -0.08) 0.029
ZMM-CRP 1.53±0.78 2.20±0.72 -0.67 (-1.20, -0.14) 0.014
ZFM-CRP 0.36±1.08 1.43±1.00 -1.07 (-1.80, -0.34) 0.006
Vertical
A-HRP -0.47±1.52 -1.20±2.03 0.73 (-0.51, 1.98) 0.239
ZTM-HRP -0.01±1.00 -0.48±0.98 0.47 (-0.23, 1.16) 0.183
ZMM-HRP 0.13±1.18 -0.53±1.58 0.66 (-0.31, 1.62) 0.175
ZFM-HRP 0.58±1.50 0.01±1.42 0.57 (-0.46, 1.59) 0.267
Transverse
ZTM width 1.74±1.27 1.86±1.22 -0.12 (-0.99, 0.75) 0.784
ZMM width 2.45±0.83 2.98±1.29 -0.53 (-1.30, 0.25) 0.177
ZFM width 1.69±0.92 1.52±0.78 0.16 (-0.44, 0.76) 0.590

Table 3

Comparisons of three-dimensional T1-T0 changes between the zygomaticomaxillary suture maturational stage B and C"

Items Stage B/mm, x -±s Stage C/mm, x -±s Net differences (95%CI) P value
Sagittal
A-CRP 2.52±1.26 2.65±1.45 -0.13 (-1.08, 0.82) 0.783
ZTM-CRP 1.16±0.97 0.53±0.80 0.63 (0.00, 1.25) 0.049
ZMM-CRP 1.73±0.70 1.97±0.92 -0.24 (-0.81, 0.33) 0.398
ZFM-CRP 0.59±1.11 1.13±1.18 -0.54 (-1.34, 0.26) 0.180
Vertical
A-HRP -0.91±1.89 -0.72±1.74 -0.19 (-1.46, 1.08) 0.764
ZTM-HRP -0.11±1.15 -0.35±0.86 0.24 (-0.47, 0.95) 0.502
ZMM-HRP -0.01±1.45 -0.36±1.37 0.35 (-0.64, 1.33) 0.477
ZFM-HRP 0.56±1.78 0.05±1.08 0.51 (-0.52, 1.53) 0.322
Transverse
ZTM width 1.49±1.14 2.11±1.26 -0.62 (-1.46, 0.22) 0.143
ZMM width 2.74±1.11 2.65±1.10 0.09 (-0.68, 0.86) 0.813
ZFM width 1.55±1.00 1.67±0.69 -0.12 (-0.72, 0.49) 0.699

Table 4

The effect of treatment protocol and ZMS stage on three dimensional T1-T0 changes by the two-way ANOVA"

Source of variation Sum of squares Mean square F value P value
A-CRP Treatment 6.97 6.97 4.28 0.047
ZMS stage 0.23 0.23 0.14 0.709
Treatment×ZMS stage 3.15 3.15 1.94 0.174
ZTM-CRP Treatment 4.06 4.06 6.30 0.018
ZMS stage 3.02 3.02 4.68 0.039
Treatment×ZMS stage 2.08 2.08 3.22 0.083
ZMM-CRP Treatment 3.82 3.82 6.73 0.015
ZMS stage 0.56 0.56 0.98 0.330
Treatment×ZMS stage 0.63 0.63 1.11 0.302
ZFM-CRP Treatment 9.64 9.64 8.94 0.006
ZMS stage 2.49 2.49 2.31 0.139
Treatment×ZMS stage 0.03 0.03 0.03 0.871
A-HRP Treatment 4.56 4.56 1.37 0.251
ZMS stage 0.37 0.37 0.11 0.742
Treatment×ZMS stage 0.99 0.99 0.30 0.590
ZTM-HRP Treatment 1.84 1.84 1.77 0.194
ZMS stage 0.48 0.48 0.46 0.502
Treatment×ZMS stage 0.00 0.00 0.00 0.952
ZMM-HRP Treatment 3.65 3.65 1.85 0.184
ZMS stage 0.93 0.93 0.47 0.497
Treatment×ZMS stage 0.64 0.64 0.32 0.574
ZFM-HRP Treatment 2.73 2.73 1.28 0.266
ZMS stage 1.92 1.92 0.90 0.350
Treatment×ZMS stage 2.44 2.44 1.15 0.293
ZTM width Treatment 0.12 0.12 0.08 0.783
ZMS stage 3.42 3.42 2.25 0.144
Treatment×ZMS stage 0.60 0.60 0.40 0.533
ZMM width Treatment 2.34 2.34 1.97 0.171
ZMS stage 0.11 0.11 0.09 0.766
Treatment×ZMS stage 1.14 1.14 0.96 0.335
ZFM width Treatment 0.22 0.22 0.29 0.592
ZMS stage 0.16 0.16 0.21 0.649
Treatment×ZMS stage 1.11 1.11 1.49 0.232

Table 5

Correlation analysis of sagittal changes between circummaxillary sutures and point A in RPE/C group"

Items Pearson correlation coefficient of A-CRP P
ZTM-CRP 0.026 0.924
ZMM-CRP 0.652 0.006
ZFM-CRP 0.083 0.761
[1] 任超超, 白玉兴. 上颌前方牵引的疗效及其长期稳定性[J]. 中华口腔医学杂志, 2018, 53(10):649-652.
[2] Wells AP, Sarver DM, Proffit WR. Long-term efficacy of reverse pull headgear therapy[J]. Angle Orthod, 2006, 76(6):915-922.
doi: 10.2319/091605-328
[3] Liou EJ, Tsai WC. A new protocol for maxillary protraction in cleft patients: Repetitive weekly protocol of alternate rapid maxillary expansions and constrictions[J]. Cleft Palate Craniofac J, 2005, 42(2):121-127.
doi: 10.1597/03-107.1
[4] Liu Y, Hou R, Jin H, et al. Relative effectiveness of facemask therapy with alternate maxillary expansion and constriction in the early treatment of class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 159(3):321-332.
doi: 10.1016/j.ajodo.2019.12.028
[5] Almuzian M, McConnell E, Darendeliler MA, et al. The effectiveness of alternating rapid maxillary expansion and constriction combined with maxillary protraction in the treatment of patients with a class Ⅲ malocclusion: A systematic review and meta-analysis[J]. J Orthod, 2018, 45(4):250-259.
doi: 10.1080/14653125.2018.1518187
[6] 王怡然, 周彦恒, 王雪东, 等. 上颌反复扩缩前方牵引三维变化的锥形束CT分析[J]. 北京大学学报(医学版), 2018, 50(4):685-693.
[7] Liu W, Zhou Y, Wang X, et al. Effect of maxillary protraction with alternating rapid palatal expansion and constriction vs expansion alone in maxillary retrusive patients: A single-center, randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2015, 148(4):641-651.
doi: 10.1016/j.ajodo.2015.04.038
[8] Parayaruthottam P, Antony V, Francis PG, et al. A retrospective evaluation of conventional rapid maxillary expansion versus alternate rapid maxillary expansion and constriction protocol combined with protraction headgear in the management of developing skeletal class Ⅲ malocclusion[J]. J Int Soc Prev Community Dent, 2018, 8(4):320-326.
doi: 10.4103/jispcd.JISPCD_66_18 pmid: 30123764
[9] 熊再道, 柯杰, 赵桂芝, 等. 两种扩弓方式对骨性Ⅲ类错牙合前方牵引效果的影响[J]. 中华口腔医学研究杂志: 电子版, 2017, 11(3):169-173.
[10] Buyukcavus MH, Kale B, Aydemir B. Comparison of treatment effects of different maxillary protraction methods in skeletal class Ⅲ patients[J]. Orthod Craniofac Res, 2020, 23(4):445-454.
doi: 10.1111/ocr.v23.4
[11] Zhao T, Hua F, He H. Alternate rapid maxillary expansion and constriction (Alt-RAMEC) may be more effective than rapid maxillary expansion alone for protraction facial mask treatment[J]. J Evid Based Dent Pract, 2020, 20(2):101408.
doi: 10.1016/j.jebdp.2020.101408
[12] Wu Z, Zhang X, Li Z, et al. A Bayesian network meta-analysis of orthopaedic treatment in class Ⅲ malocclusion: Maxillary protraction with skeletal anchorage or a rapid maxillary expander[J]. Orthod Craniofac Res, 2020, 23(1):1-15.
[13] Wang YC, Chang PM, Liou EJ. Opening of circumaxillary sutures by alternate rapid maxillary expansions and constrictions[J]. Angle Orthod, 2009, 79(2):230-234.
doi: 10.2319/031208-141.1
[14] Nanda R, Hickory W. Zygomaticomaxillary suture adaptations incident to anteriorly-directed forces in rhesus monkeys[J]. Angle Orthod, 1984, 54(3):199-210.
pmid: 6592992
[15] Zhao N, Xu Y, Chen Y, et al. Effects of class Ⅲ magnetic orthopedic forces on the craniofacial sutures of rhesus monkey[J]. Am J Orthod Dentofacial Orthop, 2008, 133(3):401-409.
doi: 10.1016/j.ajodo.2006.04.035
[16] Angelieri F, Franchi L, Cevidanes LHS, et al. Zygomaticomaxillary suture maturation: A predictor of maxillary protraction? Part Ⅰ: A classification method[J]. Orthod Craniofac Res, 2017, 20(2):85-94.
doi: 10.1111/ocr.12143 pmid: 28414869
[17] Angelieri F, Ruellas AC, Yatabe MS, et al. Zygomaticomaxillary suture maturation: Part Ⅱ: The influence of sutural maturation on the response to maxillary protraction[J]. Orthod Craniofac Res, 2017, 20(3):152-163.
doi: 10.1111/ocr.12191 pmid: 28660731
[18] Chung CH, Hufham DC. A corrected cephalometric tracing technique for diagnosis of anterior crossbite with functional shift[J]. J Clin Orthod, 2001, 35(8):500-504.
[19] Yilmaz BS, Kucukkeles N. Skeletal, soft tissue, and airway changes following the alternate maxillary expansions and constrictions protocol[J]. Angle Orthod, 2014, 84(5):868-877.
doi: 10.2319/092713-705.1 pmid: 24621102
[20] Gateno J, Xia JJ, Teichgraeber JF. New 3-dimensional cephalometric analysis for orthognathic surgery[J]. J Oral Maxillofac Surg, 2011, 69(3):606-622.
doi: 10.1016/j.joms.2010.09.010
[21] Kanomi R, Deguchi T, Kakuno E, et al. CBCT of skeletal changes following rapid maxillary expansion to increase arch-length with a development-dependent bonded or banded appliance[J]. Angle Orthod, 2013, 83(5):851-857.
doi: 10.2319/082012-669.1 pmid: 23488528
[22] Herring SW. Mechanical influences on suture development and patency[J]. Front Oral Biol, 2008, 12:41-56.
doi: 10.1159/000115031 pmid: 18391494
[23] 李鑫, 李江, 黄诗言, 等. 五种腭中缝扩展技术的临床应用[J]. 临床口腔医学杂志, 2019, 35(12):757-759.
[24] Almuzian M, Almukhtar A, Ulhaq A, et al. 3D effects of a bone-anchored intra-oral protraction in treating class Ⅲ growing patient: A pilot study[J]. Prog Orthod, 2019, 20(1):37.
doi: 10.1186/s40510-019-0290-0
[25] Liang S, Wang F, Chang Q, et al. Three-dimensional comparative evaluation of customized bone-anchored vs tooth-borne maxillary protraction in patients with skeletal class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 160(3):374-384.
doi: 10.1016/j.ajodo.2020.04.034
[26] Miranda F, Cunha Bastos JCD Magno Dos Santos A, et al. Dentoskeletal comparison of miniscrew-anchored maxillary protraction with hybrid and conventional hyrax expanders: A randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2021, 160(6):774-783.
doi: 10.1016/j.ajodo.2021.02.017
[27] Scarfe WC, Azevedo B, Toghyani S, et al. Cone beam computed tomographic imaging in orthodontics[J]. Aust Dent J, 2017, 62(Suppl 1):33-50.
doi: 10.1111/adj.2017.62.issue-S1
[28] 高璐, 谷岩. 中国1076名儿童及青年腭中缝影像学分期与其颈椎骨龄分期的相关性研究[J]. 中华口腔医学杂志, 2021, 56(3):251-255.
[29] Onem Ozbilen E, Yilmaz HN, Kucukkeles N. Comparison of the effects of rapid maxillary expansion and alternate rapid maxillary expansion and constriction protocols followed by facemask therapy[J]. Korean J Orthod, 2019, 49(1):49-58.
doi: 10.4041/kjod.2019.49.1.49 pmid: 30603625
[30] Fischer B, Masucci C, Ruellas A, et al. Three-dimensional evaluation of the maxillary effects of two orthopaedic protocols for the treatment of class Ⅲ malocclusion: A prospective study[J]. Orthod Craniofac Res, 2018, 21(4):248-257.
doi: 10.1111/ocr.2018.21.issue-4
[31] Canturk BH, Celikoglu M. Comparison of the effects of face mask treatment started simultaneously and after the completion of the alternate rapid maxillary expansion and constriction procedure[J]. Angle Orthod, 2015, 85(2):284-291.
doi: 10.2319/031114-176.1 pmid: 25017013
[32] Özbilen EÖ, Yılmaz HN, Acar YB. Does Alt-RAMEC protocol and facemask treatment affect dentoalveolar structures?[J]. Angle Orthod, 2021, 91(5):626-633.
doi: 10.2319/111620-940.1 pmid: 33843979
[33] Gautam P, Valiathan A, Adhikari R. Maxillary protraction with and without maxillary expansion: A finite element analysis of sutural stresses[J]. Am J Orthod Dentofacial Orthop, 2009, 136(3):361-366.
doi: 10.1016/j.ajodo.2008.02.021
[34] Han X, Lu H, Li S, et al. Cell morphologic changes and PCNA expression within craniofacial sutures during monkey class Ⅲ treatment[J]. Orthod Craniofac Res, 2016, 19(4):181-189.
doi: 10.1111/ocr.12127 pmid: 27405789
[1] Shishi BO,Chengzhi GAO. Tooth segmentation and identification on cone-beam computed tomography with convolutional neural network based on spatial embedding information [J]. Journal of Peking University (Health Sciences), 2024, 56(4): 735-740.
[2] Xiaotong LING,Liuyang QU,Danni ZHENG,Jing YANG,Xuebing YAN,Denggao LIU,Yan GAO. Three-dimensional radiographic features of calcifying odontogenic cyst and calcifying epithelial odontogenic tumor [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 131-137.
[3] Chen CHEN,Yuhong LIANG. Root canal therapy of maxillary molars with atypical canals: A report of three cases [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 190-195.
[4] Andong CAI,Xiaoxia WANG,Wenjuan ZHOU,Zhonghao LIU. Comparison of the virtual surgical planning position of maxilla and condyle with the postoperative real position in patients with mandibular protrusion [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 74-80.
[5] Sui LI,Wenjie MA,Shimin WANG,Qian DING,Yao SUN,Lei ZHANG. Trueness of different digital design methods for incisal guidance of maxillary anterior implant-supported single crowns [J]. Journal of Peking University (Health Sciences), 2024, 56(1): 81-87.
[6] Deng-hui DUAN,Hom-Lay WANG,En-bo WANG. Role of collagen membrane in modified guided bone regeneration surgery using buccal punch flap approach: A retrospective and radiographical cohort study [J]. Journal of Peking University (Health Sciences), 2023, 55(6): 1097-1104.
[7] Ying HUANG,Zhi-yuan WU,Xing-hong ZHOU,Zhi-gang CAI,Jie ZHANG. Category of facial symmetry perception after maxillary reconstruction using anterolateral thigh flap [J]. Journal of Peking University (Health Sciences), 2023, 55(4): 708-715.
[8] Jin-hua ZHANG,Jie PAN,Zhi-peng SUN,Xiao WANG. Effect of various intracanal materials on the diagnostic accuracy of cone-beam computed tomography in vertical root fractures [J]. Journal of Peking University (Health Sciences), 2023, 55(2): 333-338.
[9] Jia-xue YE,Yu-hong LIANG. A prevalence survey of cone-beam computed tomography use among endodontic practitioners [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 114-119.
[10] Meng-qiao PAN,Jian LIU,Li XU,Xiao XU,Jian-xia HOU,Xiao-tong LI,Xiao-xia WANG. A long-term evaluation of periodontal phenotypes before and after the periodontal-orthodontic-orthognathic combined treatment of lower anterior teeth in patients with skeletal Angle class Ⅲ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 52-61.
[11] Yu FU,Xin-nong HU,Sheng-jie CUI,Jie SHI. Decompensation effectiveness and alveolar bone remodeling analysis of mandibular anterior teeth after preoperative orthodontic treatment in high-angle patients with skeletal class Ⅱ malocclusion [J]. Journal of Peking University (Health Sciences), 2023, 55(1): 62-69.
[12] Juan GAO,Hang-miao LV,Hui-min MA,Yi-jiao ZHAO,Xiao-tong LI. Evaluation of root resorption after surgical orthodontic treatment of skeletal Class Ⅲ malocclusion by three-dimensional volumetric measurement with cone-beam CT [J]. Journal of Peking University (Health Sciences), 2022, 54(4): 719-726.
[13] Gang YANG,Wen-jie HU,Jie CAO,Deng-gao LIU. Three-dimensional morphology analysis of the supraosseous gingival profile of periodontally healthy maxillary anterior teeth [J]. Journal of Peking University (Health Sciences), 2021, 53(5): 990-994.
[14] JIANG You-sheng,FENG Lin,GAO Xue-jun. Influence of base materials on stress distribution in endodontically treated maxillary premolars restored with endocrowns [J]. Journal of Peking University (Health Sciences), 2021, 53(4): 764-769.
[15] MENG Yuan,ZHANG Li-qi,ZHAO Ya-ning,LIU Deng-gao,ZHANG Zu-yan,GAO Yan. Three-dimentional radiographic features of 67 maxillary radicular cysts [J]. Journal of Peking University (Health Sciences), 2021, 53(2): 396-401.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!