北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (2): 203-208. doi: 10.19723/j.issn.1671-167X.2022.02.001

• 论著 •    下一篇

基于癌症基因组图谱数据库结直肠癌免疫细胞浸润预测模型的建立

丁婷婷,曾楚雄,胡丽娜,余明华()   

  1. 上海市浦东医院,复旦大学附属浦东医院肿瘤科,上海 201399
  • 收稿日期:2021-11-18 出版日期:2022-04-18 发布日期:2022-04-13
  • 通讯作者: 余明华 E-mail:ymh3011@163.com
  • 基金资助:
    浦东新区科技发展基金(PKJ2018-Y33);上海市浦东新区卫生系统优秀青年医学人才培养计划项目(PWRq2021-21)

Establishment of a prediction model for colorectal cancer immune cell infiltration based on the cancer genome atlas (TCGA) database

DING Ting-ting,ZENG Chu-xiong,HU Li-na,YU Ming-hua()   

  1. Department of Oncology, Shanghai Pudong Hospital, Pudong Hospital Affiliated to Fudan University, Shanghai 201399, China
  • Received:2021-11-18 Online:2022-04-18 Published:2022-04-13
  • Contact: Ming-hua YU E-mail:ymh3011@163.com
  • Supported by:
    Pudong New Area Science and Technology Development Fund(PKJ2018-Y33);Shanghai Pudong New Area Health System Young Medical Talents Training Program Project(PWRq2021-21)

摘要:

目的: 研究结直肠癌组织的免疫细胞浸润与临床预后之间的相关性。方法: 从癌症基因组图谱(the can-cer genome atlas,TCGA)中提取结直肠癌数据,基于反卷积算法(CIBERSORT)分析评估结直肠癌组织中22种肿瘤浸润性免疫细胞(tumor-infiltrating immune cells,TIICs)的浸润模式,以确定不同TIICs表达程度与5年生存率之间的关联。使用条形图展示结直肠癌样本中TIICs比例,绘制矩阵图分析不同TIICs之间的相关性。结果: 共从 TCGA数据库中提取了473例结直肠癌组织和41个正常对照组织,对比分析表明,结直肠癌组织中各种TIICs比例存在差异。在研究的细胞亚群中,结直肠癌组织中M0、M1和M2巨噬细胞和单核细胞的比例相对较高,而B细胞和中性粒细胞的比例相对较低。TIICs的比例与患者的TNM分期及临床分级显著相关:静息NK细胞、CD8+T细胞、浆细胞与T期相关,活化树突状细胞与N期相关,嗜酸性粒细胞、M1巨噬细胞及活化肥大细胞与M期相关,M1巨噬细胞和单核细胞与临床分级相关。生存分析结果显示,活化的树突状细胞与结直肠癌患者的5年生存率呈正相关,幼稚CD4+T细胞与5年生存率呈负相关。结论: 分析结直肠癌患者肿瘤组织TIICs亚群比例具有潜在的临床预后价值,可通过其识别可能从化疗中受益的患者,并预测新药的可能靶点。

关键词: 淋巴细胞, 肿瘤浸润, 结直肠肿瘤, 基因数据库, 列线图, 临床病理特征

Abstract:

Objective: To study the correlation between immune cell infiltration in colorectal cancer tissue and clinical prognosis and to explore the levels of some immune cell genes for predicting the prognosis of patients with glioma colorectal cancer. Methods: In this study, we extracted colorectal cancer data from the cancer genome atlas (TCGA). Based on a deconvolution algorithm (called CIBERSORT) and clinically annotated expression profiles, the analysis assessed the infiltration patterns of 22 immune cells in colorectal cancer tissue to determine the association between each cell type and survival. Differences in five-year survival rate effectively illustrate the clinical prognostic value of each immune cell proportion in colorectal cancer, using a bar graph, correlation-based heatmap to represent the proportion of immune cells in each colorectal cancer sample. Results: A total of 473 colorectal cancer tissues and 41 normal control tissues were extracted from the TCGA database, and the comparative analysis showed that there were differences in the proportion of various TIICs in colorectal cancer tissues, which could characterize individual differences and have prognostic value. Among the cell subsets studied, the proportions of memory B cells, plasma cells, CD4+ T cells, natural killer (NK) cells, M0 macrophages, M2 macrophages, and activated mast cells were significantly different between normal and cancer tissues. Resting NK cells, CD8+ T cells, and plasma cells were associated with T phase, activated dendritic cells were associated with N phase, and eosinophils, M1 macrophages, and activated mast cells were associated with M phase. Survival analysis showed that activated dendritic cells were positively associated with five-year survival rate in colorectal cancer patients. Naive CD4+ T cells were inversely associated with five-year survival rate. Conclusion: There are different degrees of immune cell infiltration in colorectal cancer tissues, and these differences may be important determinants of prognosis and treatment response. We conducted a new gene expression-based study of immune cell subtype levels and prognosis in colorectal cancer, which has potential clinical prognostic value in colorectal cancer patients.

Key words: Lymphocytes, tumor-infiltrating, Colorectal neoplasms, Genetic databases, Nomogram, Clinicopathological characteristics

中图分类号: 

  • R730.51

表1

TCGA数据库中结直肠癌患者一般临床特征"

Characteristics n (%)
Gender
Male 238 (50.4)
Female 235 (49.6)
Vital status
Living 88 (18.6)
Deceased 385 (81.4)
Clinical stage
StageⅠ-Ⅱ 254 (53.7)
Stage Ⅲ-Ⅳ 219 (46.3)
T stage
T1 10 (2.1)
T2 77 (16.3)
T3 308 (65.1)
T4 78 (16.5)
N stage
N0 270 (57.1)
N1 103 (21.8)
N2 100 (21.1)
M stage
M0 334 (70.6)
M1 62 (23.1)
Mx 77 (16.3)

图1

结直肠癌和正常组织样本中免疫细胞比例"

图2

22种TIICs比例的相关矩阵"

图3

TIICs与结直肠癌TNM分期和临床分级的关系"

图4

与5年生存率显著相关的特定免疫细胞群的生存曲线"

[1] Siegel RL, Miller KD, Fedewa SA, et al. Colorectal cancer statistics, 2017[J]. CA Cancer J Clin, 2017, 67(3):177-193.
doi: 10.3322/caac.21395
[2] Shibutani M, Maeda K, Nagahara H, et al. Tumor-infiltrating lymphocytes predict the chemotherapeutic outcomes in patients with stage Ⅳ colorectal cancer[J]. In Vivo, 2018, 32(1):151-158.
[3] Guinney J, Dienstmann R, Wang X, et al. The consensus mole-cular subtypes of colorectal cancer[J]. Nat Med, 2015, 21(11):1350-1356.
doi: 10.1038/nm.3967 pmid: 26457759
[4] Church J. Molecular genetics of colorectal cancer[J]. Sem Colon Rectal Surg, 2016, 27(4):172-175.
doi: 10.1053/j.scrs.2016.04.013
[5] Bremnes RM, Al-Shibli K, Donnem T, et al. The role of tumor-infiltrating immune cells and chronic inflammation at the tumor site on cancer development, progression, and prognosis: Emphasis on non-small cell lung cancer[J]. J Thorac Oncol, 2011, 6(4):824-833.
doi: 10.1097/JTO.0b013e3182037b76 pmid: 21173711
[6] Mao X, Xu J, Wang W, et al. Crosstalk between cancer-associated fibroblasts and immune cells in the tumor microenvironment: New findings and future perspectives[J]. Mol Cancer, 2021, 20(1):131-142.
doi: 10.1186/s12943-021-01428-1
[7] Baxevanis CN, Papamichail M, Perez SA. Immune classification of colorectal cancer patients: Impressive but how complete?[J]. Expert Opin Biol Ther, 2013, 13(4):517-526.
doi: 10.1517/14712598.2013.751971
[8] Grizzi F, Basso G, Borroni EM, et al. Evolving notions on immune response in colorectal cancer and their implications for biomarker developmentc[J]. Inflamm Res, 2018, 67(5):375-389.
doi: 10.1007/s00011-017-1128-1 pmid: 29322204
[9] Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles[J]. Nat Methods, 2015, 12(5):453-457.
doi: 10.1038/nmeth.3337 pmid: 25822800
[10] Liu X, Wu S, Yang Y, et al. The prognostic landscape of tumor-infiltrating immune cell and immunomodulators in lung cancer[J]. Biomed Pharmacother, 2017, 95:55-61.
doi: 10.1016/j.biopha.2017.08.003
[11] Quail DF, Joyce JA. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med, 2013, 19(11):1423-1437.
doi: 10.1038/nm.3394
[12] Klemm F, Joyce JA. Microenvironmental regulation of therapeutic response in cancer[J]. Trends Cell Biol, 2015, 25(4):198-213.
doi: 10.1016/j.tcb.2014.11.006
[13] Anitei MG, Zeitoun G, Mlecnik B, et al. Prognostic and predictive values of the immunoscore in patients with rectal cancer[J]. Clin Cancer Res, 2014, 20(7):1891-1899.
doi: 10.1158/1078-0432.CCR-13-2830
[14] Huh JW, Lee JH, Kim HR. Prognostic significance of tumorinfiltrating lymphocytes for patients with colorectal cancer[J]. Arch Surg, 2012, 147(4):366-372.
doi: 10.1001/archsurg.2012.35
[15] Karpinski P, Rossowska J, Sasiadek MM. Immunological landscape of consensus clusters in colorectal cancer[J]. Oncotarget, 2017, 8(62):105299-105311.
doi: 10.18632/oncotarget.v8i62
[16] Mirjolet C, Charon-Barra C, Ladoire S, et al. Tumor lymphocyte immune response to preoperative radiotherapy in locally advanced rectal cancer: The LYMPHOREC study[J]. Oncoimmunology, 2018, 7(3):e1396402.
doi: 10.1080/2162402X.2017.1396402
[17] Galon J, Costes A, Sanchez-Cabo F, et al. Type, density, and location of immune cells within human colorectal tumors predict clinical outcome[J]. Science, 2006, 313(5759):1960-1964.
doi: 10.1126/science.1129139
[18] Klintrup K, Makinen JM, Kauppila S, et al. Inflammation and prognosis in colorectal cancer[J]. Eur J Cancer, 2005, 41(17):2645-2654.
doi: 10.1016/j.ejca.2005.07.017 pmid: 16239109
[19] Li T, Fan J, Wang B, et al. TIMER: A web server for comprehensive analysis of tumor-infiltrating immune cells[J]. Cancer Res, 2017, 77(21):e108-e110.
doi: 10.1158/0008-5472.CAN-17-0307
[20] Pagès F, Mlecnik B, Marliot F, et al. International validation of the consensus immunoscore for the classification of colon cancer: A prognostic and accuracy study[J]. Lancet, 2018, 391(10135):2128-2139.
doi: 10.1016/S0140-6736(18)30789-X
[21] Steinman RM. Decisions about dendritic cells: Past, present, and future[J/OL]. Annu Rev Immunol, 2012, 30:1-22. doi: 10.1146/annurevimmunol-100311-102839.
doi: 10.1146/annurevimmunol-100311-102839
[22] Shimizu K, Kotera Y, Aruga A, et al. Postoperative dendritic cell vaccine plus activated T-cell transfer improves the survival of patients with invasive hepatocellular carcinoma[J]. Hum Vaccin Immunother, 2014, 10(4):970-976.
doi: 10.4161/hv.27678
[23] Pagès F, Kirilovsky A, Mlecnik B, et al. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer[J]. J Clin Oncol, 2009, 27(35):5944-5951.
[24] Gannon PO, Baumgaertner P, Huber A, et al. Rapid and continued T-cell differentiation into long-term effector and memory stem cells in vaccinated melanoma patients[J]. Clin Cancer Res, 2017, 23(13):3285-3296.
doi: 10.1158/1078-0432.CCR-16-1708
[1] 田佳宜,张霞,程功,刘庆红,王世阳,何菁. 系统性红斑狼疮患者血清白细胞介素-2受体α水平及其临床意义[J]. 北京大学学报(医学版), 2021, 53(6): 1083-1087.
[2] 马向波,张学武,贾汝琳,高颖,刘洪江,刘玉芳,李英妮. 外周血淋巴细胞亚群检测在系统性硬化症治疗中的应用[J]. 北京大学学报(医学版), 2021, 53(4): 721-727.
[3] 孙争辉,黄晓娟,董靖晗,刘茁,颜野,刘承,马潞林. 临床T1期肾细胞癌肾窦侵犯的危险因素[J]. 北京大学学报(医学版), 2021, 53(4): 659-664.
[4] 高鹏,雒艳萍,李俊峰. B/C基因型的乙型肝炎病毒对不同免疫阶段慢性乙型肝炎患者T淋巴细胞及其亚群的影响[J]. 北京大学学报(医学版), 2020, 52(6): 1153-1156.
[5] 包芳,史尉利,胡静,张娣,高东晗,夏云霞,景红梅,克晓燕,葛庆岗,沈宁. 新型冠状病毒肺炎淋巴细胞亚群与严重程度的相关分析[J]. 北京大学学报(医学版), 2020, 52(6): 1075-1081.
[6] 姜妮,乔国梁,王小利,周心娜,周蕾,宋雨光,赵艳杰,任军. 中性粒细胞与淋巴细胞比例对评估接受过继性细胞免疫治疗的晚期胰腺癌患者预后的临床意义[J]. 北京大学学报(医学版), 2020, 52(3): 597-602.
[7] 王文鹏,王捷夫,胡均,王俊锋,刘嘉,孔大陆,李健. 结直肠间质瘤临床病理特征及预后分析[J]. 北京大学学报(医学版), 2020, 52(2): 353-361.
[8] 张旭初,张建华,王荣福,范岩,付占立,闫平,赵光宇,白艳霞. 18F-FDG PET/CT联合多种肿瘤标志物在结直肠中分化腺癌术后复发及转移中的应用价值[J]. 北京大学学报(医学版), 2019, 51(6): 1071-1077.
[9] 杨阳,刘毅强,王晓红,季科,李忠武,白健,杨爱蓉,胡颖,韩海勃,李子禹,步召德,吴晓江,张连海,季加孚. 单中心大样本Epstein-Barr病毒相关性胃癌亚型的临床病理及分子特征分析[J]. 北京大学学报(医学版), 2019, 51(3): 451-458.
[10] 肖榆冰,郭慕瑶,左晓霞. 免疫代谢与系统性红斑狼疮[J]. 北京大学学报(医学版), 2018, 50(6): 1120-1124.
[11] 周建华,王地,王焕瑞,侯晓利,郁卫东,许克新,胡浩. γδT细胞对膀胱癌细胞的细胞毒活性及MICA/B蛋白在膀胱癌中的表达[J]. 北京大学学报(医学版), 2018, 50(4): 595-601.
[12] 刘余庆,卢剑,郝一昌,肖春雷,马潞林. 经皮肾镜取石术后尿脓毒血症的相关危险因素及预测模型[J]. 北京大学学报(医学版), 2018, 50(3): 507-513.
[13] 陈玮, 胡凡磊, 刘洪江, 徐丽玲, 李英妮, 栗占国. 类风湿关节炎患者髓系来源的抑制细胞促进自身B细胞增殖[J]. 北京大学学报(医学版), 2017, 49(5): 819-823.
[14] 刘恩阳, 刘静芳, 邵文威, 肖琳, 李国辉, 昌晓红, 邱晓彦. 肿瘤来源的IgG抑制脐带血中T细胞的增殖[J]. 北京大学学报(医学版), 2017, 49(5): 824-828.
[15] 刘静维, 卢戌, 杨照敏, 邓丽娟, 杨林. 负载NY-ESO-1多肽的树突状细胞激发特异性细胞毒性T淋巴细胞反应[J]. 北京大学学报(医学版), 2017, 49(5): 840-846.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张三. 中文标题测试[J]. 北京大学学报(医学版), 2010, 42(1): 1 -10 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[4] 赵磊, 王天龙 . 右心室舒张末期容量监测用于肝移植术中容量管理的临床研究[J]. 北京大学学报(医学版), 2009, 41(2): 188 -191 .
[5] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[6] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[7] 万有, , 韩济生, John E. Pintar. 孤啡肽基因敲除小鼠电针镇痛作用增强[J]. 北京大学学报(医学版), 2009, 41(3): 376 -379 .
[8] 张燕, 韩志慧, 钟延丰, 王盛兰, 李玲玲, 郑丹枫. 骨骼肌活组织检查病理诊断技术的改进及应用[J]. 北京大学学报(医学版), 2009, 41(4): 459 -462 .
[9] Jian-wei GU, Emily YOUNG, Zhi-jun PAN, Kevan B. TUCKER, Megan SHPARAGO, Min HUANG, Amelia Purser BAILEY. SD大鼠长期高盐饮食可导致其高血压并改变肾细胞因子基因表达谱[J]. 北京大学学报(医学版), 2009, 41(5): 505 -515 .
[10] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .