北京大学学报(医学版) ›› 2016, Vol. 48 ›› Issue (1): 45-50. doi: 10.3969/j.issn.1671-167X.2016.01.008

• 论著 • 上一篇    下一篇

人脂肪间充质干细胞与生物材料共混物三维打印体的体内成骨

宋杨,王晓飞,王宇光,孙玉春,吕培军△   

  1. (北京大学口腔医学院·口腔医院口腔医学数字化研究中心,口腔数字化医疗技术和材料国家工程实验室,北京100081)
  • 出版日期:2016-02-18 发布日期:2016-02-18
  • 通讯作者: 吕培军 E-mail:kqlpj@bjmu.edu.cn
  • 基金资助:

    教育部科学技术研究项目(113002A)资助

Osteogenesis of human adipose-derived mesenchymal stem cells-biomaterial mixture in vivo after 3D bio-printing

SONG Yang, WANG Xiao-fei, WANG Yu-guang, SUN Yu-chun, LV Pei-jun△   

  1. (Center of Digital Dentistry,Peking University School and Hospital of Stomatology; National Engineering Laboratory for Digital and Material Technology of Stomatology,Beijing 100081,China)
  • Online:2016-02-18 Published:2016-02-18
  • Contact: LV Pei-jun E-mail:kqlpj@bjmu.edu.cn
  • Supported by:

    Supported by Science and Technology Research Project of Chinese Ministry of Education,China(113002A)

摘要:

目的:构建人脂肪间充质干细胞(human adiposederived mesenchymal stem cells, hASCs)生物材料共混物三维生物打印体,检测其体内成骨能力,初步建立将细胞共混物三维生物打印技术应用于体内成骨的技术路线。方法:以P4代hASCs作为种子细胞,进行成骨向诱导,并采用碱性磷酸酶(alkaline phosphatase, ALP)染色和茜素红矿化结节染色检测其成骨向分化的能力。将种子细胞加入20 g/L海藻酸钠和80 g/L明胶混合物(细胞密度约为1×106个/mL),采用Bioplotter三维生物打印机(德国Envision公司)进行打印,获得细胞海藻酸钠明胶共混物打印体,采用活-死细胞双荧光染色法观察打印体中细胞存活率,随后对打印体进行1周成骨诱导培养,作为实验组;另打印不含细胞、只含海藻酸钠明胶溶胶的三维打印体作为对照组。将实验组和对照组打印体植入裸鼠背部皮下,于植入后6周取出样本,采用苏木精伊红(hematoxylin-eosin, HE)染色、马松(Masson)三色法染色、免疫组织化学染色和Inveon微型CT(Micro CT)检测打印体样本的成骨情况。结果:打印体中细胞存活率达89%±2%,打印体植入6周后取出,对照组植入打印体大部分发生降解,形态不规则,为无定型凝胶状,而实验组打印体基本保持原有大小,质地坚韧。HE染色和马松三色法染色结果显示,植入6周后,实验组打印体中有类骨组织形成,并有血管长入;免疫组织化学染色结果显示,骨钙素抗体表达成阳性;Micro CT结果显示,实验组密度较高,新生骨容积为18%±1%。结论:hASCs共混物三维生物打印体可在裸鼠体内异位成骨,细胞共混物三维生物打印技术应用于体内成骨的技术路线是可行的。

关键词: 骨生成, 打印, 三维, 间充质干细胞, 脂肪组织, 生物相容性材料

Abstract:

Objective:To construct human adipose-derived mesenchymal stem cells (hASCs)-biomaterial mixture 3D bio-printing body and detect its osteogenesis in vivo, and to establish a guideline of osteogenesis in vivo by use of 3D bio-printing technology preliminarily.Methods:P4 hASCs were used as seed cells, whose osteogenic potential in vitro was tested by alkaline phosphatase (ALP) staining and alizarin red staining after 14 d of osteogenic induction. The cells were added into 20 g/L sodium alginate and 80 g/L gelatin mixture (cell density was 1×106/mL), and the cell-sodium alginate-gelatin mixture was printed by Bioplotter 3D bio-printer (Envision company, Germany), in which the cells’ survival rate was detected by live-dead cell double fluorescence staining. Next, the printing body was osteogenically induced for 1 week to gain the experimental group; and the sodium alginate-gelatin mixture without cells was also printed to gain the control group. Both the experimental group and the control group were implanted into the back of the nude mice. After 6 weeks of implantation, the samples were collected, HE staining, Masson staining, immunohistochemical staining and Inveon Micro CT test were preformed to analyze their osteogenic capability. Results: The cells’ survival rate was 89%±2% after printing. Six weeks after implantation, the samples of the control group were mostly degraded, whose shape was irregular and gel-like; the samples of the experimental group kept their original size and their texture was tough. HE staining and Masson staining showed that the bone-like tissue and vessel ingrowth could be observed in the experimental group  6 weeks after implantation, immunohistochemical staining showed that the result of osteocalcin was positive, and Micro CT results showed that samples of the experimental group had a higher density and the new bone volume was 18%±1%.Conclusion:hASCs-biomaterial mixture 3D bio-printing body has capability of ectopic bone formation in nude mice, and it is feasible to apply cells-biomaterial mixture 3D bio-printing technology in the area of bone formation in vivo.

Key words: Osteogenesis, Printing, three-dimensional, Mesenchymal stromal cells, Adipose tissue, Biocompatible materials

中图分类号: 

  • R329.471
[1] 武志慧, 胡明智, 赵巧英, 吕凤凤, 张晶莹, 张伟, 王永福, 孙晓林, 王慧. miR-125b-5p修饰脐带间充质干细胞对系统性红斑狼疮的免疫调控机制[J]. 北京大学学报(医学版), 2024, 56(5): 860-867.
[2] 唐祖南,胡耒豪,陈震,于尧,章文博,彭歆. 增强现实技术在口腔颌面颈部解剖识别中的应用评价[J]. 北京大学学报(医学版), 2024, 56(3): 541-545.
[3] 展新新,曹露露,项东,汤皓,夏丹丹,林红. 成型方向对3D打印口腔义齿基托树脂材料物理性能及力学性能的影响[J]. 北京大学学报(医学版), 2024, 56(2): 345-351.
[4] 吕梁,张铭津,温奧楠,赵一姣,王勇,李晶,杨庚辰,柳大为. 应用三维软组织空间线角模板法评价颏部对称性[J]. 北京大学学报(医学版), 2024, 56(1): 106-110.
[5] 毛渤淳,田雅婧,王雪东,李晶,周彦恒. 骨性Ⅱ类高角患者拔牙矫治前后的面部软硬组织变化[J]. 北京大学学报(医学版), 2024, 56(1): 111-119.
[6] 凌晓彤,屈留洋,郑丹妮,杨静,闫雪冰,柳登高,高岩. 牙源性钙化囊肿与牙源性钙化上皮瘤的三维影像特点[J]. 北京大学学报(医学版), 2024, 56(1): 131-137.
[7] 胡攀攀,李彦,刘啸,唐彦超,李梓赫,刘忠军. 自稳式人工椎体在颈椎前路手术中的应用[J]. 北京大学学报(医学版), 2024, 56(1): 161-166.
[8] 黄莹,吴志远,周行红,蔡志刚,张杰. 股前外侧皮瓣修复上颌骨缺损术后面部软组织对称性感观分级[J]. 北京大学学报(医学版), 2023, 55(4): 708-715.
[9] 张雯,刘筱菁,李自力,张益. 基于解剖标志的鼻翼基底缩窄缝合术对正颌患者术后鼻唇部形态的影响[J]. 北京大学学报(医学版), 2023, 55(4): 736-742.
[10] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[11] 温奥楠,刘微,柳大为,朱玉佳,萧宁,王勇,赵一姣. 5种椅旁三维颜面扫描技术正确度的初步评价[J]. 北京大学学报(医学版), 2023, 55(2): 343-350.
[12] 周华,王仁吉,刘忠军,刘晓光,吴奉梁,党礌,韦峰. 3D打印人工椎体在颈椎脊索瘤全脊椎切除术中的应用[J]. 北京大学学报(医学版), 2023, 55(1): 144-148.
[13] 熊士凯,史尉利,王安鸿,谢兴,郭秦炜. 腓骨远端撕脱骨折的影像学诊断:踝关节X线与CT三维重建的比较[J]. 北京大学学报(医学版), 2023, 55(1): 156-159.
[14] 高梓翔,王勇,温奥楠,朱玉佳,秦庆钊,张昀,王晶,赵一姣. 基于三维下颌骨平均模型的颌骨标志点自动确定方法[J]. 北京大学学报(医学版), 2023, 55(1): 174-180.
[15] 韩超,周祝兴,陈有荣,董子慧,余家阔. 绵羊外周血间充质干细胞的生物学特性[J]. 北京大学学报(医学版), 2022, 54(6): 1151-1157.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!