北京大学学报(医学版) ›› 2016, Vol. 48 ›› Issue (3): 544-549. doi: 10.3969/j.issn.1671-167X.2016.03.029

• 论著 • 上一篇    下一篇

锥形束CT融合三维面像评估正颌术后软硬组织的变化

王哲1,朱榴宁2,周琳3,伊彪4△   

  1. (1. 北京大学口腔医学院·口腔医院急诊科, 北京100081;2.江苏省人民医院口腔科,南京210000;3.北京大学口腔医学院·口腔医院第五门诊部,北京100020;4. 北京大学口腔医学院·口腔医院颌面外科,北京100081)
  • 出版日期:2016-06-18 发布日期:2016-06-18
  • 通讯作者: 伊彪 E-mail:kqyb@vip.siina.com

Feasibility of integrating 3D photos and cone-beam computed tomography images used to evaluate changes of soft and hard tissue after orthognathic surgery

WANG Zhe1, ZHU Liu-ning2, ZHOU Lin3, YI Biao4△   

  1. (1. Department of Oral Emergency, Peking University School and Hospital of Stomatology, Beijing 100081, China; 2. Department of Stomatology, Jiangsu Province Hospital, Nanjing 210000, China; 3. Fifth Clinical Division, Peking University School and Hosptial of Stomatology, Beijng 100020, China; 4. Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing 100081, China)
  • Online:2016-06-18 Published:2016-06-18
  • Contact: YI Biao E-mail:kqyb@vip.siina.com

摘要:

目的:探讨锥形束CT(cone-beam computed tomography,CBCT)融合三维面像用于研究牙颌面畸形患者正颌术后软硬组织变化的可行性,并应用此方法初步测量各软硬组织标志点手术前后的位置变化。 方法: 选取10例牙颌面畸形患者,分别于术前(T0)和术后3个月(T1)拍摄大视野CBCT和三维面像。利用MIMICS和Geomagic Studio软件对图像进行处理分析,将CBCT进行阈值分割并与三维面像融合,生成新的三维立体模型,探讨该方法可行性。使用3D 色谱分析(3D color map)和测量平均距离对CBCT与三维面像配准过程的误差进行定性和定量分析。通过CBCT骨组织配准,将新生成的手术前后三维模型置于同一空间坐标系,测量各标志点[鼻尖点( pronasale, Prn )、鼻下点(subnasale, Sn)、上唇突点(labrale superior, Ls)、前鼻棘点(anterior nasal spine, ANS)、上齿槽座点(subspinale, A)、上中切牙点(upper incisor edge, UIE)]手术前后位置变化。结果: CBCT融合三维面像用于研究正颌术后软硬组织变化具有可行性,配准误差在0.3 mm以内,通过3D 色谱分析直观看到,面部区域配准良好。正颌术后唇部各标志点(Ls、ANS、A、UIE)位置差异有统计学意义(P<0.05),而鼻部标志点(Prn、Sn)位置差异无统计学意义(P>0.1)。结论:CBCT融合三维面像作为一种新方法可以用于临床研究正颌术后软硬组织变化,具有较高的精确度和可重复性。正颌术后唇部软硬组织标志点位置明显变化,而鼻部标志点位置受正颌手术影响较小。

关键词: 锥束计算机体层摄影术, 立体摄影测量术, 正颌外科, 软硬组织变化

Abstract:

Objective: To evaluate the feasibility of integrating 3D photos and cone-beam computed tomography (CBCT) images and to assess the degree of error that may occur during the above process, and to analyze soft and hard tissue changes after orthognathic surgery using this new method. Methods: Ten patients with maxillofacial deformities were chosen. For each patient, CBCT scans and stereophotographic images were taken before and 3 months after surgery. 3D photos were superimposed onto the CBCT skin images using relatively immobile areas of the face as a reference. 3D color maps and mean distances were used to evaluate the errors that might occur during the process. Two reference planes were set up using certain points. The distances between Prn (pronasale),Sn (subnasale),Ls (labrale superior),ANS (anterior nasal spine),A (subspinale),UIE (upper incisor edge) to the coronal plane were calculated before and after surgery. In order to verify the repeatability of this method, we examined the distances twice at two-week intervals. Paired t test was used to evaluate the reproducibility. Results: CBCT and 3D photos could be successfully fused with clinically acceptable errors. This new method could be used to evaluate soft and hard tissue changes after orthognathic surgery. The 3D color maps showed that the two images could be fused with minimal errors. The mean distances were within 0.3 mm, and the locations of landmarks on maxilla and mandible such as Ls, ANS, A, UIE changed significantly after orthognathic surgery (P<0.05).Landmarks on the nose such as Prn,Sn had little changes after surgery (P>0.1). The paired t test showed that the mean value and standard deviation were (0.08±0.98) mm. Conclusion: Fusing of CBCT and 3D stereophotographic images used as a new method in evaluating soft and hard tissue changes after orthognathic surgery was feasible and accurate. The virtual 3D composite craniofacial models permitted concurrent assessment of hard and soft tissues during diagnosis and treatment planning. Maxillary and mandibular locations had significant association with orthoganthic surgery while the nasal tissue was not simp affected by surgery.

Key words: Cone-beam computed tomography, Stereophotogrammetry, Orthognathic surgery, Soft and hard tissue changes

中图分类号: 

  •  
[1] 凌晓彤,屈留洋,郑丹妮,杨静,闫雪冰,柳登高,高岩. 牙源性钙化囊肿与牙源性钙化上皮瘤的三维影像特点[J]. 北京大学学报(医学版), 2024, 56(1): 131-137.
[2] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[3] 蔡安东,王晓霞,周文娟,柳忠豪. 下颌前突畸形患者上颌骨及髁突虚拟位置与术后现实位置的比较[J]. 北京大学学报(医学版), 2024, 56(1): 74-80.
[4] 段登辉,WANGHom-Lay,王恩博. 可吸收胶原膜在颊侧袋形瓣引导性骨再生手术中的作用: 一项回顾性影像学队列研究[J]. 北京大学学报(医学版), 2023, 55(6): 1097-1104.
[5] 张雯,刘筱菁,李自力,张益. 基于解剖标志的鼻翼基底缩窄缝合术对正颌患者术后鼻唇部形态的影响[J]. 北京大学学报(医学版), 2023, 55(4): 736-742.
[6] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[7] 高璐,谷岩. 中国人群腭中缝形态特点分期与Demirjian牙龄的相关性[J]. 北京大学学报(医学版), 2021, 53(1): 133-138.
[8] 孙现涛,何伟,刘筱菁,李自力,王兴. Delaire头影测量分析法预测正颌手术患者上颌及颏部理想矢状向位置的可行性评估[J]. 北京大学学报(医学版), 2020, 52(1): 90-96.
[9] 贾鹏程,杨刚,胡文杰,赵一姣,刘木清. 根尖片评估单根牙骨内牙根表面积的准确性[J]. 北京大学学报(医学版), 2018, 50(1): 91-97.
[10] 马静,江久汇. 骨性Ⅱ类和Ⅲ类高角错牙合患者下切牙区的牙槽骨形态分析[J]. 北京大学学报(医学版), 2018, 50(1): 98-103.
[11] 徐筱,徐莉,江久汇,吴佳琪,李小彤,靖无迪. 锥形束CT评判安氏Ⅲ类错牙合上前牙骨开裂与骨开窗的准确性分析[J]. 北京大学学报(医学版), 2018, 50(1): 104-109.
[12] 曹婕1,孟焕新. 锥形束CT用于评估牙槽骨骨缺损的情况和骨再生区域骨密度的变化[J]. 北京大学学报(医学版), 2018, 50(1): 110-116.
[13] 吴灵,刘筱菁,李自力,王兴. 磨牙非中性关系与虚拟环境下拼对终末咬合精度[J]. 北京大学学报(医学版), 2018, 50(1): 154-159.
[14] 常大桐,周彦恒,刘伟涛. 上颌反复快速扩缩对上气道影响的锥束CT研究[J]. 北京大学学报(医学版), 2017, 49(4): 685-690.
[15] 陈全,张晓1张智勇,高巍,刘文曙,孟甜,陈宇寰,王慧丽. 上颌窦前外侧壁骨内血管孔道位置锥形束CT影像判断分析及其临床应对措施[J]. 北京大学学报(医学版), 2017, 49(3): 540-546.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!