北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (3): 586-590. doi: 10.19723/j.issn.1671-167X.2019.03.031

• 技术方法 • 上一篇    下一篇

前交叉韧带生物力学止点重建的解剖学与有限元分析

张家豪,任爽,邵嘉艺,牛星跃,胡晓青,敖英芳()   

  1. 北京大学第三医院运动医学研究所,北京市运动医学关节伤病重点实验室, 北京 100191
  • 收稿日期:2019-03-13 出版日期:2019-05-14 发布日期:2019-06-26
  • 作者简介:敖英芳,教授,主任医师,博士生导师,北京大学运动医学研究所所长,北京大学第三医院崇礼院区院长。曾任北京大学党委副书记、北京大学医学部党委书记、北京大学第三医院副院长。
    中华医学会第二十五届理事会常务理事,中国体育科学学会副理事长,中华医学会运动医疗分会前任主任委员,中华医学会骨科分会委员、全国关节镜学组组长,中国体育科学学会运动医学分会副主任委员,中国医师协会内镜医师分会副会长,亚洲关节镜学会前任主席,亚洲关节软骨修复学会创始人之一,国际关节软骨修复学会-中国部(ICRS-CHINA)创始人兼主席。《中国微创外科杂志》《中国骨伤杂志》《中国运动医学杂志》副主编。
  • 基金资助:
    北京大学临床科学家计划专项(BMU2019LCKXJ008)-中央高校基本科研业务费和北京大学第三医院院临床重点项目(BYSY2018005)

Anatomical and finite element analysis of anterior cruciate ligament reconstruction within biomechanical insertion

Jia-hao ZHANG,Shuang REN,Jia-yi SHAO,Xing-yue NIU,Xiao-qing HU,Ying-fang AO()   

  1. Beijing Key Laboratory of Sports Injuries, Beijing 100191, China
  • Received:2019-03-13 Online:2019-05-14 Published:2019-06-26
  • Supported by:
    Supported by the Fundamental Research funds for the Central Universities: Peking University Clinical Scientist Program(BMU2019LCKXJ008), and Grant from the Major Clinical Project of Peking University Third Hospital(BYSY2018005)

RICH HTML

  

摘要: 目的 解剖研究大体观察膝关节前交叉韧带(anterior cruciate ligament, ACL)胫骨止点的形态,并利用有限元分析软件分析ACL的力学止点分布,为临床ACL重建提供新理念。方法 选取10例新鲜成人膝关节标本,男6例,女4例,采取标准髌旁内侧入路打开关节腔,暴露并解剖剔除ACL,观察并记录ACL胫骨止点形态,测量胫骨止点前后径和左右径。利用三维重建软件MIMICS及有限元分析软件ANSYS建立膝关节模型,模拟临床体格检查Lachman试验和pivot-shift试验,观察ACL在胫骨和股骨端止点的受力分布情况。结果 ACL胫骨致密止点大体观呈扁长的弧形,其前后径为(13.8±2.0) mm,体部左右径为(5.3±0.6) mm,前缘左右径为(11.5±1.2) mm。有限元分析显示,股骨端应力较高区域为住院医师嵴(residents’ ridge)附近一类椭圆形区域,胫骨端应力较高部分延内侧髁间嵴(medial intercondylar ridge)狭长分布,与解剖观察相符,从理论上验证了ACL止点的生物力学分布特点。结论 解剖研究及有限元分析均证实ACL胫骨止点为一扁长的弧形,理想的ACL重建技术应依据其生物力学特点进行重建, 基于解剖学研究和生物力学分析本课题组提出前交叉韧带生物力学止点重建理念,并建立手术模型。

关键词: 前交叉韧带重建, 胫骨止点, 解剖, 有限元, 生物力学

Abstract: Objective: To provide new concepts of anterior cruciate ligament (ACL) reconstruction by anatomical gross observation of ACL tibial insertion and finite element analysis of distribution of ACL mechanical insertion.Methods: In the anatomical study, ten fresh adult cadaveric knees were dissected, including 6 males and 4 females, all knees were generally observed through standard medial parapatellar approaches, paying attention to the close anatomical relationship of tibial insertion and anterior horn of lateral meniscus, and ACL was exposed and gradually removed from the inside. The shape of tibial insertion of ACL was observed and recorded, and anterior-posterior diameters and left-right diameters of tibial insertion were measured with vernier caliper. For the study of finite element analysis, three-dimensional thin-layer magnetic resonance imaging of normal knee joint was used to establish knee joint model. Three-dimensional reconstruction software MIMICS and finite element analysis software ANSYS were used to establish knee joint model, subsequently, clinical physical examination Lachman test and pivot-shift test were simulated to observe the force distribution of ACL tibial insertion and femoral insertion. Results: The ACL tibial mechanical insertion was rather flat and long similar as an arc shape without a clear separation between anterior medial bundle (AMB) and posterolateral bundle (PLB) in gross observation. The dense fibers lies belonged to the medial intercondylar ridge and ended up anterior with the osseous landmark of anterior ridge. Its average anterior-posterior diameter was (13.8±2.0) mm, the average left-right diameter of midsubstance was (5.3±0.6) mm, and the average left-right diameter of anterior margin was (11.5±1.2) mm. The finite element analysis showed that distribution on the femoral side was oval shape mainly below the residents’ ridge, while the tibial side was rather flat mainly along the medial intercondylar ridge, which was consistent with the anatomical observation. The biomechanical characteristics of ACL attachments were verified theoretically.Conclusion: Anatomical study and finite element analysis have confirmed the flat arc shape of ACL tibial insertion. The ideal reconstruction technique of ACL should be based on its biomechanical insertion. Based on anatomical study and biomechanical analysis, we have proposed the idea of ACL biomechanical insertion reconstruction (BIR) and established a surgical model with oval femoral tunnel and rounded-rectangle tibial tunnel.

Key words: ACL reconstruction, Tibial insertion, Anatomy, Finite element analysis, Biomechanical

中图分类号: 

  • R329.4

图1

标本测量"

图2

Lachman试验时股骨(A)和胫骨(B)端的von Mises应力分布"

图3

Pivot-shift试验时股骨(A)和胫骨(B)端的von Mises应力分布"

图4

骨道口截面示意图"

[1] Kraeutler MJ, Wolsky RM, Vidal AF , et al. Anatomy and biomechanics of the native and reconstructed anterior cruciate ligament: surgical implications[J]. J Bone Joint Surg Am, 2017,99(5):438-445.
doi: 10.2106/JBJS.16.00754
[2] Lohmander LS, Englund PM, Dahl LL , et al. The long-term consequence of anterior cruciate ligament and meniscus injuries[J]. Am J Sports Med, 2017,35(10):1756-1769.
[3] Offerhaus C, Albers M, Nagai K , et al. Individualized anterior cruciate ligament graft matching: in vivo comparison of cross-sectional areas of hamstring, patellar, and quadriceps tendon grafts and ACL insertion area[J]. Am J Sports Med, 2018,46(11):2646-2652.
doi: 10.1177/0363546518786032
[4] Siebold R, Schuhmacher P, Fernandez F , et al. Flat midsubstance of the anterior cruciate ligament with tibial “C”-shaped insertion site[J]. Knee Surg Sports Traumatol Arthrosc, 2015,23(11):3136-3142.
doi: 10.1007/s00167-014-3058-6
[5] Oka S, Schuhmacher P, Brehmer A , et al. Histological analysis of the tibial anterior cruciate ligament insertion[J]. Knee Surg Sports Traumatol Arthrosc, 2015,24(3):747-753.
[6] 尤田, 张新涛, 张文涛 , 等. 中国成人前交叉韧带胫骨止点的解剖研究[J]. 中国修复重建外科杂志, 2015,29(6):730-733.
[7] Sasaki N, Ishibashi Y, Tsuda E , et al. The femoral insertion of the anterior cruciate ligament: discrepancy between macroscopic and histological observations[J]. Arthroscopy, 2012,28(8):1135-1146.
doi: 10.1016/j.arthro.2011.12.021
[8] Tsukada H, Ishibashi Y, Tsuda E , et al. Anatomical analysis of the anterior cruciate ligament femoral and tibial footprints[J]. J Orthop Sci, 2008,13(2):122-129.
doi: 10.1007/s00776-007-1203-5
[9] Noh JH, Yang BG, Roh YH , et al. Anterior cruciate ligament reconstruction using 4-strand hamstring autograft: conventional single-bundle technique versus oval-footprint technique[J]. Arthroscopy, 2011,27(11):1502-1510.
doi: 10.1016/j.arthro.2011.06.027
[10] Shino K, Mae T, Nakamura N . Surgical technique: revision ACL reconstruction with a rectangular tunnel technique[J]. Clin Orthop Relat Res, 2012,470(3):843-852.
doi: 10.1007/s11999-011-1948-1
[11] Petersen W, Forkel P, Achtnich A , et al. Technique of anatomical footprint reconstruction of the ACL with oval tunnels and medial portal aimers[J]. Arch Orthop Trauma Surg, 2013,133(6):827-833.
doi: 10.1007/s00402-013-1741-6
[12] Nakase J, Toratani T, Kosaka M , et al. Technique of anatomical single bundle ACL reconstruction with rounded rectangle femoral dilator[J]. Knee, 2016,23(1):91-96.
doi: 10.1016/j.knee.2015.07.005
[13] 张家豪, 刘振龙, 胡晓青 , 等. 椭圆形骨道与圆形骨道重建膝关节前交叉韧带术后移植物成熟度对比研究[J]. 中国运动医学杂志, 2018,37(2):104-109.
[14] 赵逢源, 史尉利, 张继英 , 等. 椭圆形骨道改良重建兔前交叉韧带动物模型的建立[J]. 中国运动医学杂志, 2017,36(4):300-305.
[15] Noyes FR . The function of the human anterior cruciate ligament and analysis of single- and double-bundle graft reconstructions[J]. Sports Health, 2009,1(1):66-75.
doi: 10.1177/1941738108326980
[16] Vairis A, Stefanoudakis G, Petousis M , et al. Evaluation of an intact, an ACL-deficient, and a reconstructed human knee joint finite element model[J]. Comput Methods Biomech Biomed Engin, 2016,19(3):263-270.
doi: 10.1080/10255842.2015.1015526
[17] LaPrade CM, Smith SD, Rasmussen MT , et al. Consequences of tibial tunnel reaming on the meniscal roots during cruciate ligament reconstruction in a cadaveric model, Part 1: The anterior cruciate ligament[J]. Am J Sports Med, 2015,43(1):200-206.
doi: 10.1177/0363546514554769
[18] 王健全, 敖英芳, 刘平 , 等. 前交叉韧带股骨止点临床解剖学研究[J]. 中国运动医学杂志, 2007,26(3):266-270.
[19] Tensho K, Shimodaira H, Aoki T , et al. Bony landmarks of the anterior cruciate ligament tibial footprint: a detailed analysis comparing 3-dimensional computed tomography images to visual and histological evaluations[J]. Am J Sports Med, 2014,42(6):1433-1440.
doi: 10.1177/0363546514528789
[1] 任爽, 时会娟, 梁子轩, 张思, 胡晓青, 黄红拾, 敖英芳. 前交叉韧带重建术后侧切动作的生物力学特征[J]. 北京大学学报(医学版), 2024, 56(5): 868-873.
[2] 唐祖南,胡耒豪,陈震,于尧,章文博,彭歆. 增强现实技术在口腔颌面颈部解剖识别中的应用评价[J]. 北京大学学报(医学版), 2024, 56(3): 541-545.
[3] 王江静,魏顺依,敖英芳,杨渝平. 前交叉韧带重建术后三种不同药物镇痛早期疗效的对比[J]. 北京大学学报(医学版), 2024, 56(2): 293-298.
[4] 赵菡,卫彦,张学慧,杨小平,蔡晴,宁成云,徐明明,刘雯雯,黄颖,何颖,郭亚茹,江圣杰,白云洋,吴宇佳,郭雨思,郑晓娜,李文静,邓旭亮. 口腔硬组织修复材料仿生设计制备和临床转化[J]. 北京大学学报(医学版), 2024, 56(1): 4-8.
[5] 张雯,刘筱菁,李自力,张益. 基于解剖标志的鼻翼基底缩窄缝合术对正颌患者术后鼻唇部形态的影响[J]. 北京大学学报(医学版), 2023, 55(4): 736-742.
[6] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[7] 邱淑婷,弗朗斯,张晓,叶红强,刘云松. 口腔内窥镜在口腔解剖标志识别中的应用[J]. 北京大学学报(医学版), 2023, 55(1): 120-123.
[8] 高梓翔,王勇,温奥楠,朱玉佳,秦庆钊,张昀,王晶,赵一姣. 基于三维下颌骨平均模型的颌骨标志点自动确定方法[J]. 北京大学学报(医学版), 2023, 55(1): 174-180.
[9] 马珂楠,陈虎,沈妍汝,周永胜,王勇,孙玉春. 选择性激光熔化打印可摘局部义齿圆环形卡环固位力的有限元分析[J]. 北京大学学报(医学版), 2022, 54(1): 105-112.
[10] 蒋艳芳,王健,王永健,刘佳,裴殷,刘晓鹏,敖英芳,马勇. 前交叉韧带翻修重建术后中长期临床疗效及影响因素[J]. 北京大学学报(医学版), 2021, 53(5): 857-863.
[11] 任爽,时会娟,张家豪,刘振龙,邵嘉艺,朱敬先,胡晓青,黄红拾,敖英芳. 前交叉韧带重建术后移植物应力的有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 865-870.
[12] 印钰,梅宇,王泽刚,宋首一,刘鹏飞,何鹏峰,武文杰,谢兴. 固定袢和可调节袢在粗骨道中的长度对股骨骨道增宽及膝关节功能的影响[J]. 北京大学学报(医学版), 2021, 53(5): 883-890.
[13] 周伟,安金刚,荣起国,张益. 下颌骨颏部骨折联合双侧髁突囊内骨折致伤机制的三维有限元分析[J]. 北京大学学报(医学版), 2021, 53(5): 983-989.
[14] 姜又升,冯琳,高学军. 垫底材料弹性模量对髓腔固位冠修复后上颌前磨牙应力分布的影响[J]. 北京大学学报(医学版), 2021, 53(4): 764-769.
[15] 林春平,卢松鹤,朱浚鑫,胡洪成,岳兆国,唐志辉. 个性化根形种植体的螺纹形态对周围牙槽骨应力分布影响的三维有限元分析[J]. 北京大学学报(医学版), 2019, 51(6): 1130-1137.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!