北京大学学报(医学版) ›› 2020, Vol. 52 ›› Issue (1): 103-106. doi: 10.19723/j.issn.1671-167X.2020.01.016

• 论著 • 上一篇    下一篇

不同备洞方法收集自体骨骨量

李维婷,李蓬(),朴牧子,张芳,邸杰   

  1. 北京大学口腔医学院·口腔医院,第二门诊部 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100101
  • 收稿日期:2018-10-07 出版日期:2020-02-18 发布日期:2020-02-20
  • 通讯作者: 李蓬 E-mail:kqlipeng05420533@sina.com

Study on bone volume harvested from the implant sites with different methods

Wei-ting LI,Peng LI(),Mu-zi PIAO,Fang ZHANG,Jie DI   

  1. Second Clinical Division, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100101, China
  • Received:2018-10-07 Online:2020-02-18 Published:2020-02-20
  • Contact: Peng LI E-mail:kqlipeng05420533@sina.com

RICH HTML

  

摘要:

目的:探讨采用不同方法及不同的种植系统备洞留取自体骨骨量的差异。方法:在均质环氧树脂仿制的下颌骨模型上,应用美国Bicon种植系统、德国Bego种植系统Semados系列或瑞士Straumann种植系统,分别采用全程无水低速备洞或高转速有冷却水备洞再低转速关水出洞(简称开水进关水出钻)的备洞方法,比较同一种植系统用这两种方法留取自体骨骨量的差异,比较不同种植系统用相同方法留取骨骨量的差异,并将其与取骨钻取骨量比较。每一直径钻用一种方法备10个窝洞,留取的骨屑用电子精密天平称重。结果:制备相同洞型时,不论是Bicon还是Bego种植系统全程无水低速备洞法留取的骨量均大于开水进关水出钻方法留取的骨量,差异有统计学意义(P<0.05), 前者约是后者的3.3~7.0倍。制备相似洞型时,采用开水进关水出钻的备洞方法,不同种植系统(Bicon、Bego和Straumann)收集骨量差异无统计学意义。Bicon系统无水预备5 mm×10 mm洞型和Bego系统无水预备4.7 mm×10 mm洞型时留取的骨量显著少于取骨钻预备5 mm×10 mm洞型留取的骨量。结论:全程无水低速备洞方法较开水进关水出钻的备洞方法可收集更多自体骨,不同种植系统采用同一方法制备相似洞形时,收集的自体骨骨量无明显差异。

关键词: 牙种植, 骨移植, 自体骨

Abstract:

Objective: To compare the volume of autogenous bone particles harvested utilizing different techniques and various implant systems during implant surgery, and to determine the advantageous method to collect autogenous bone particles. Methods: Homogeneous epoxy resin simulated jaw bone model was enrolled. Bicon, Bego implant systems and Straumann tissue level implant systems were utilized. The two techniques were investigated. One method was low-speed drilling (50 r/min) without water irri-gating, and the other one was drilling with cold water irrigating to the ideal depth, then closing the water and drilling out with low speed (50 r/min). The bone particles in the drill groove and implant beds were collected. The volumes of the bone harvested were compared between the different techniques and also among the three implant systems, then they were compared with the volume of the bone harvested by the special bone drill. The sample size of each sub-group was 10. The bone particles were weighed by electronic balance after drying. Results: The harvested bone volume between the latch reamers and hand reamers of Bicon system with the first method was not significantly different. When the same size implant bed was prepared, the volume of the bone particles produced during the implant surgery with low-speed drill without water was significantly higher than that with the other method no matter Bicon [3.5 mm×10 mm hole for example (28.42±6.04) mg vs. (6.30±2.51) mg, P<0.001] or Bego system [2.8 mm×10 mm hole for example (28.95±5.39) mg vs. (4.61±3.39) mg, P<0.001] was used, and the ratio of bone volume between the first method and the second one was approximately 3.3 to 7.0 times. When using the second method to prepare the similar size implant bed, the bone volume was not significant different among Bicon, Bego and Straumann implant systems [Bicon (9.90±3.42) mg, Bego (8.70±4.09) mg, and Straumann (10.56±5.66) mg, P=0.69]. When preparing a 5mm-diameter-10mm-length hole with Bicon implant system and a 4.7mm-diameter-10mm-length with Bego implant system, the bone quantity harvested from each group was less than that harvested by special bone drill from Neo Biotech [Bicon (82.54±12.26) mg, Bego (85.07±12.64) mg vs. Neo Biotech (96.78±13.19) mg, P<0.05]. Conclusion: More autogenous bone can be harvested from implant beds by preparing with low-speed rolling without water than the method with water irrigation. When utilizing the same preparing method, the implant system has no impact on the volume of the bone harvested.

Key words: Dental implantation, Bone graft, Autogenous bone

中图分类号: 

  • R783.3

表1

Bicon种植系统电钻和手钻慢速关水备洞收集的骨量比较"

Diameter of hole/mm Latch reamers/mg Hand reamers/mg P
3.0 17.71±3.58 16.95±4.48 0.680
3.5 29.16±4.99 28.42±6.04 0.769
4.0 42.35±7.68 45.91±8.23 0.331
4.5 57.56±10.76 60.10±9.57 0.584
5.0 77.56±14.29 82.54±12.26 0.414

表2

Bicon种植系统选择不同的备洞方法留取骨量比较"

Diameter of
hole/mm
High speed with
irrigation then low speed
without irrigation/mg
Low speed
without irrigation/mg
P
3.0 4.18±1.86 16.95±4.48 <0.001
3.5 6.30±2.51 28.42±6.04 <0.001
4.0 9.90±3.42 45.91±8.23 <0.001
4.5 14.08±5.94 60.10±9.57 <0.001
5.0 24.59±15.50 82.54±12.26 <0.001

表3

Bego种植系统选择不同的备洞方法留取骨量比较"

Diameter
of hole/mm
High speed with
irrigation then low speed
without irrigation/mg
Low speed
without irrigation/mg
P
2.8 4.61±3.39 28.95±5.39 <0.001
3.25 5.57±3.75 39.54±7.03 <0.001
3.65 6.92±3.77 48.44±8.14 <0.001
4.0 8.70±4.09 58.45±7.68 <0.001
4.7 13.67±5.53 85.07±12.64 <0.001

表4

不同种植系统开水进关水出钻的备洞方法留取骨量的差异"

Diameter of
hole/mm
Bicon
system/mg
Bego
system/mg
Straumann
system/mg
P
2.8-3.0 4.18±1.86 4.61±3.39 2.96±1.54 0.288
3.5-3.75 6.30±2.51 6.92±3.77 5.18±1.80 0.406
4.0-4.2 9.90±3.42 8.70±4.09 10.56±5.66 0.692

表5

不同取骨方式留取骨重量的比较"

Variable Bicon system/mg Bego system/mg Neo biotech drill/mg
Bone volume 82.54±12.26 85.07±12.64 96.78±13.19*#
[1] Stern A, Barzani G . Autogenous bone harvest for implant reconstruction[J]. Dent Clin North Am, 2015,59(2):409-420.
[2] Matsubara T, Suardita K, Ishii M , et al. Alveolar bone marrow as a cell source for regenerative medicine: differences between alveolar and iliac bone marrow stromal cells[J]. J Bone Miner Res, 2005,20(3):399-409.
[3] Stellingsma K, Bouma J, Stegenga B , et al. Satisfaction and psychosocial aspects of patients with an extremely resorbed mandible treated with implant-retained overdentures.A prospective,comparative study[J]. Clin Oral Implants Res, 2003,14(2):166-172.
[4] Anitua E, Carda C, Andia I . A novel drilling procedure and subsequent bone autograft preparation: a technical note[J]. Int J Oral Maxillofacial Implants, 2007,22(1):138-145.
[5] Manzano-Moreno FJ, Rodríguezmartínez JB, Ramos-Torrecillas J , et al. Proliferation and osteogenic differentiation of osteoblast-like cells obtained from two techniques for harvesting intraoral bone grafts[J]. Clin Oral Investigat, 2013,17(5):1349-1356.
[6] Oh JH, Fang Y, Jeong SM et al. The effect of low-speed drilling without irrigation on heat generation: an experimental study[J]. J Korean Assoc Oral Maxillofac Surg, 2016,42(1):9-12.
[7] Kim SJ, Yoo J, Kim YS , et al. Temperature change in pig rib bone during implant site preparation by low-speed drilling[J]. J Appl Oral Sci, 2010,18(5):522-527.
[8] Coelho PG, Suzuki M, Guimaraes MV , et al. Early bone healing around different implant bulk designs and surgical techniques: A study in dogs[J]. Clin Implant Dent Relat Res, 2010,12(3):202-208.
[9] Anitua E, Prado R, Orive G . A lateral approach for sinus elevation using PRGF technology[J]. Clin Implant Dent Relat Res, 2009,11(Suppl 1):e23-31.
[10] Liang C, Lin X, Wang SL , et al. Osteogenic potential of three different autogenous bone particles harvested during implant surgery[J]. Oral Dis, 2017,23(8):1099-1108.
[11] Miron RJ, Zhang Q, Sculean A , et al. Osteoinductive potential of 4 commonly employed bone grafts[J]. Clin Oral Investig, 2016,20(8):2259-2265.
[12] Meloni SM, Jovanovic SA, Urban I , et al. Horizontal ridge augmentation using GBR with a native collagen membrane and 1 ∶1 ratio of particulated xenograft and autologous bone: a 1-year prospective clinical study[J]. Clin Implant Dent Relat Res, 2017,19(1):38-45.
[13] Benic GI, Bernasconi M, Jung RE , et al. Clinical and radiographic intra-subject comparison of implants placed with or without guided bone regeneration: 15-year results[J]. J Clin Periodontol, 2017,44(3):315-325.
[14] Jensen SS, Broggini N, Hjørting-Hansen E , et al. Bone healing and graft resorption of autograft, anorganic bovine bone and beta-tricalcium phosphate. a histologic and histomorphometric study in the mandibles of minipigs[J]. Clin Oral Implants Res, 2006,17(3):237-243.
[15] Fu JH, Wang HL . Horizontal bone augmentation: the decision tree[J]. Int J Periodont Restorat Dent, 2011,31(4):429-436.
[1] 王聪伟,高敏,于尧,章文博,彭歆. 游离腓骨瓣修复下颌骨缺损术后义齿修复的临床分析[J]. 北京大学学报(医学版), 2024, 56(1): 66-73.
[2] 李穗,马雯洁,王时敏,丁茜,孙瑶,张磊. 上前牙种植单冠修复体切导的数字化设计正确度[J]. 北京大学学报(医学版), 2024, 56(1): 81-87.
[3] 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98.
[4] 汪大伟,王华东,李利,尹欣,黄伟,郭继东,杨亚锋,刘义灏,郑扬. 自体下关节突骨块应用于骨质疏松患者腰椎椎间融合术的疗效分析[J]. 北京大学学报(医学版), 2023, 55(5): 899-909.
[5] 丁茜,李文锦,孙丰博,谷景华,林元华,张磊. 表面处理对氧化钇和氧化镁稳定的氧化锆种植体晶相及断裂强度的影响[J]. 北京大学学报(医学版), 2023, 55(4): 721-728.
[6] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[7] 孙菲,刘建,李思琪,危伊萍,胡文杰,王翠. 种植体黏膜下微生物在健康种植体和种植体周炎中的构成与差异:一项横断面研究[J]. 北京大学学报(医学版), 2023, 55(1): 30-37.
[8] 王鹃,尉华杰,孙井德,邱立新. 预成刚性连接杆用于无牙颌种植即刻印模制取的应用评价[J]. 北京大学学报(医学版), 2022, 54(1): 187-192.
[9] 梁峰,吴敏节,邹立东. 后牙区单牙种植修复5年后的临床修复疗效观察[J]. 北京大学学报(医学版), 2021, 53(5): 970-976.
[10] 刘晓强,杨洋,周建锋,刘建彰,谭建国. 640例单牙种植术对血压和心率影响的队列研究[J]. 北京大学学报(医学版), 2021, 53(2): 390-395.
[11] 周培茹, 蒋析, 华红. 口腔黏膜病患者口腔种植的时机及注意事项[J]. 北京大学学报(医学版), 2021, 53(1): 5-8.
[12] 李蓬,朴牧子,胡洪成,王勇,赵一姣,申晓婧. 经嵴顶上颌窦底提升术后不植骨同期种植的影像研究[J]. 北京大学学报(医学版), 2021, 53(1): 95-101.
[13] 郝柯屹,罗佳,邸萍,郭厚佐,沈惠丹,刘焱萍,张宇,林野. 三维图像融合技术评价上颌全牙列种植固定修复前后的鼻唇软组织形态变化[J]. 北京大学学报(医学版), 2020, 52(5): 924-930.
[14] 李菲,乔静,段晋瑜,张勇,王秀婧. 引导性组织再生术对浓缩生长因子联合植骨术治疗下颌磨牙Ⅱ度根分叉病变临床效果的影响[J]. 北京大学学报(医学版), 2020, 52(2): 346-352.
[15] 释栋,曹婕,戴世爱,孟焕新. 植体周炎再生治疗短期疗效观察[J]. 北京大学学报(医学版), 2020, 52(1): 58-63.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!