北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (1): 17-24. doi: 10.19723/j.issn.1671-167X.2024.01.004

• 论著 • 上一篇    下一篇

不同种类聚合物对猪小肠黏膜下层支架仿生矿化的影响

陈晓颖1,张一2,李雨柯1,唐琳1,*(),刘玉华1,*()   

  1. 1. 北京大学口腔医学院·口腔医院修复科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081
    2. 北京大学口腔医学院·口腔医院综合二科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2023-10-09 出版日期:2024-02-18 发布日期:2024-02-06
  • 通讯作者: 唐琳,刘玉华 E-mail:dent20@pku.edu.cn;liuyuhua@bjmu.edu.cn
  • 基金资助:
    国家自然科学基金(81801027)

Effects of different polymers on biomimetic mineralization of small intestine submucosal scaffolds

Xiaoying CHEN1,Yi ZHANG2,Yuke LI1,Lin TANG1,*(),Yuhua LIU1,*()   

  1. 1. Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of General Dentistry Ⅱ, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2023-10-09 Online:2024-02-18 Published:2024-02-06
  • Contact: Lin TANG,Yuhua LIU E-mail:dent20@pku.edu.cn;liuyuhua@bjmu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(81801027)

RICH HTML

  

摘要:

目的: 探究不同种类的聚合物对脱细胞猪小肠黏膜下层(small intestinal submucosa,SIS)支架体外仿生矿化的影响,并基于理化性能和生物相容性指标评价各组SIS矿化支架。方法: 将冷冻干燥法制备而成的SIS支架分别浸泡在模拟体液(simulated body fluid,SBF)、含聚丙烯酸(polyacrylic acid,PAA)的矿化液和同时含PAA和聚天冬氨酸(polyaspartic acid,PASP)的矿化液中持续2周,隔天换液,依次得到SBF@SIS、PAA@SIS、PAA/PASP@SIS支架,以未矿化的SIS支架为对照组,评价上述支架的理化性能及生物相容性。结果: 环境扫描电子显微镜(environment scanning electron microscopy,ESEM)下各组支架均呈适宜孔径的三维多孔结构,各组矿化支架均可见晶体附着,其中以PAA/PASP@SIS支架晶体沉积更为规则,同时可见胶原纤维增粗。能谱分析显示,3组矿化支架均可见钙、磷元素的特征峰,以PAA/PASP@SIS支架峰值最高;傅里叶变换红外光谱分析证实,3组矿化支架均实现了羟基磷灰石与SIS结合;各组支架均具有良好的亲水性;3组矿化支架压缩强度均高于对照组,以PAA/PASP@SIS支架压缩强度最优;各组支架均能有效吸附蛋白,以PAA/PASP@SIS组吸附能力最佳。CCK-8细胞增殖实验(周期为1、3、5、7、9 d)中,PAA/PASP@SIS组展现出最佳的促细胞增殖能力。结论: 经同时含PAA和PASP的矿化液制备的PAA/PASP@SIS支架与其他矿化支架相比具有更优的理化性能和生物相容性,具有骨组织工程应用的潜能。

关键词: 生物聚合物, 仿生矿化, 组织工程, 骨和骨组织, 小肠黏膜下层

Abstract:

Objective: To explore the effects of different polymers on in vitro biomimetic mineralization of small intestinal submucosa (SIS) scaffolds, and to evaluate the physicochemical properties and biocompatibility of the SIS scaffolds. Methods: The SIS scaffolds prepared by freeze-drying method were immersed in simulated body fluid (SBF), mineralized liquid containing polyacrylic acid (PAA) and mine-ralized liquid containing PAA and polyaspartic acid (PASP). After two weeks in the mineralized solution, the liquid was changed every other day. SBF@SIS, PAA@SIS, PAA/PASP@SIS scaffolds were obtained. The SIS scaffolds were used as control group to evaluate their physicochemical properties and biocompatibility. We observed the bulk morphology of the scaffolds in each group, analyzed the microscopic morphology by environment scanning electron microscopy and determined the porosity and pore size. We also analyzed the surface elements by energy dispersive X-ray spectroscopy (EDX), analyzed the structure of functional groups by Flourier transformed infrared spectroscopy (FTIR), detected the water absorption rate by using specific gravity method, and evaluated the compression strength by universal mechanical testing machine. The pro-cell proliferation effect of each group of scaffolds were evaluated by CCK-8 cell proliferation method. Results: Under scanning electron microscopy, the scaffolds of each group showed a three-dimensional porous structure with suitable pore size and porosity, and crystal was observed in all the mineralized scaffolds of each group, in which the crystal deposition of PAA/PASP@SIS scaffolds was more regular. At the same time, the collagen fibers could be seen to thicken. EDX analysis showed that the characteristic peaks of Ca and P were found in the three groups of mineralized scaffolds, and the highest peaks were found in the PAA/PASP@SIS scaffolds. FTIR analysis proved that all the three groups of mineralized scaffolds were able to combine hydroxyapatite with SIS. All the scaffolds had good hydrophilicity. The compressive strength of the mineralized scaffold in the three groups was higher than that in the control group, and the best compressive strength was found in PAA/PASP@SIS scaffold. The scaffolds of all the groups could effectively adsorb proteins, and PAA/PASP@SIS group had the best adsorption capacity. In the CCK-8 cell proliferation experiment, the PAA/PASP@SIS scaffold showed the best ability to promote cell proliferation with the largest number of living cells observed. Conclusion: Compared with other mineralized scaffolds, PAA/PASP@SIS scaffolds prepared by mineralized solution containing both PAA and PASP have better physicochemical properties and biocompatibility and have potential applications in bone tissue engineering.

Key words: Biopolymers, Biomimetic mineralization, Tissue engineering, Bone and bones, Small intestinal submucosa

中图分类号: 

  • R318

图1

各组支架宏观形貌"

图2

ESEM下各组支架微观形貌(A-D, ×300; E-H, ×1 000)"

图3

各组支架表面Mapping图(A)和EDX图谱(B)"

图4

各组支架理化性能表征"

图5

各组支架矿化性能及生物相容性"

1 Qu H , Fu H , Han Z , et al. Biomaterials for bone tissue engineering scaffolds: A review[J]. RSC Adv, 2019, 9 (45): 26252- 26262.
doi: 10.1039/C9RA05214C
2 Langer R , Vacanti JP . Tissue engineering[J]. Science, 1993, 260 (5110): 920- 926.
doi: 10.1126/science.8493529
3 Asti A , Gioglio L . Natural and synthetic biodegradable polymers: Different scaffolds for cell expansion and tissue formation[J]. Int J Artif Organs, 2014, 37 (3): 187- 205.
doi: 10.5301/ijao.5000307
4 Turnbull G , Clarke J , Picard F , et al. 3D bioactive composite scaffolds for bone tissue engineering[J]. Bioact Mater, 2018, 3 (3): 278- 314.
5 Saravanan S , Leena RS , Selvamurugan N . Chitosan based biocomposite scaffolds for bone tissue engineering[J]. Int J Biol Macromol, 2016, 93 (Pt B): 1354- 1365.
6 Zhao J , Lu X , Duan K , et al. Improving mechanical and biological properties of macroporous HA scaffolds through composite coatings[J]. Colloids Surf B Biointerfaces, 2009, 74 (1): 159- 166.
doi: 10.1016/j.colsurfb.2009.07.012
7 Bian T , Zhao K , Meng Q , et al. The construction and perfor-mance of multi-level hierarchical hydroxyapatite (HA)/collagen composite implant based on biomimetic bone Haversian motif[J]. Mater Des, 2019, 162, 60- 69.
doi: 10.1016/j.matdes.2018.11.040
8 Ye Z , Qi Y , Zhang A , et al. Biomimetic mineralization of fibrillar collagen with strontium-doped hydroxyapatite[J]. ACS Macro Lett, 2023, 12 (3): 408- 414.
doi: 10.1021/acsmacrolett.3c00039
9 Kato T , Suzuki T , Amamiya T , et al. Effects of macromolecules on the crystallization of CaCO3 the formation of organic/inorganic composites[J]. Supramol Sci, 1998, 5 (3): 411- 415.
10 Aizenberg J , Addadi L , Weiner S , et al. Stabilization of amorphous calcium carbonate by specialized macromolecules in biological and synthetic precipitates[J]. Adv Mater, 1996, 8 (3): 222- 226.
doi: 10.1002/adma.19960080307
11 Nudelman F , Lausch A , Sommerdijk N , et al. In vitro models of collagen biominerallization[J]. J Struct Biol, 2013, 183 (2): 258- 269.
doi: 10.1016/j.jsb.2013.04.003
12 Gower LA , Tirrell DA . Calcium carbonate films and helices grown in solutions of poly(aspartate)[J]. J Cryst Growth, 1998, 191 (1): 153- 160.
13 Dai L , Qi Y , Niu L , et al. Inorganic-organic nanocomposite assembly using collagen as a template and sodium tripolyphosphate as a biomimetic analog of matrix phosphoprotein[J]. Cryst Growth Des, 2011, 11 (8): 3504- 3511.
doi: 10.1021/cg200663v
14 龚春玲, 陈飞扬, 卜寿山, 等. 仿生矿化前后静电纺复合支架的性能对比[J]. 南京医科大学学报(自然科学版), 2020, 40 (5): 748- 753.
15 Öfkeli F , Demir D , Bölgen N . Biomimetic mineralization of chitosan/gelatin cryogels and in vivo biocompatibility assessments for bone tissue engineering[J]. J Appl Polym Sci, 2021, 138 (14): e50337.
doi: 10.1002/app.50337
16 El-Fiqi A , Kim JK , Kim HW . Novel bone-mimetic nanohydroxyapatite/collagen porous scaffolds biomimetically minera-lized from surface silanized mesoporous nanobioglass/collagen hybrid scaffold: Physicochemical, mechanical and in vivo evaluations[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110, 110660.
doi: 10.1016/j.msec.2020.110660
17 Li B , Wang M , Liu Y , et al. Independent effects of structural optimization and resveratrol functionalization on extracellular matrix scaffolds for bone regeneration[J]. Colloids Surf B Biointerfaces, 2022, 212, 112370.
doi: 10.1016/j.colsurfb.2022.112370
18 Wang M , Li B , Liu Y , et al. A novel bionic extracellular matrix polymer Scaffold enhanced by calcium silicate for bone tissue engineering[J]. ACS Omega, 2021, 6 (51): 35727- 35737.
doi: 10.1021/acsomega.1c05623
19 Antoniac IV , Antoniac A , Vasile E , et al. In vitro characterization of novel nanostructured collagen-hydroxyapatite composite scaffolds doped with magnesium with improved biodegradation rate for hard tissue regeneration[J]. Bioact Mater, 2021, 6 (10): 3383- 3395.
20 Saxena N , Mizels J , Cremer M , et al. Comparison of synthetic vs. biogenic polymeric process-directing agents for intrafibrillar mine-ralization of collagen[J]. Polymers (Basel), 2022, 14 (4): 775.
doi: 10.3390/polym14040775
21 Bharadwaz A , Jayasuriya AC . Recent trends in the application of widely used natural and synthetic polymer nanocomposites in bone tissue regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2020, 110, 110698.
doi: 10.1016/j.msec.2020.110698
22 Chandika P , Ko SC , Oh GW , et al. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application[J]. Int J Biol Macromol, 2015, 81, 504- 513.
doi: 10.1016/j.ijbiomac.2015.08.038
23 Oosterlaken BM , Vena MP , de With G . In vitro mineralization of collagen[J]. Adv Mater, 2021, 33 (16): e2004418.
doi: 10.1002/adma.202004418
24 Du T , Niu Y , Liu Y , et al. Physical and chemical characterization of biomineralized collagen with different microstructures[J]. J Funct Biomater, 2022, 13 (2): 57.
doi: 10.3390/jfb13020057
25 Yuwono LA , Siswanto , Sari M , et al. Fabrication and characte-rization of hydroxyapatite-polycaprolactone-collagen bone scaffold by electrospun nanofiber[J]. Int J Polym Mater, 2023, 72 (16): 1281- 1293.
doi: 10.1080/00914037.2022.2097675
26 Guo M , Pegoraro AF , Mao A , et al. Cell volume change through water efflux impacts cell stiffness and stem cell fate[J]. Proc Natl Acad Sci USA, 2017, 114 (41): E8618- E8627.
27 Tang L , Chen X , Wang M , et al. A biomimetic in situ mineralization ECM composite scaffold to promote endogenous bone regeneration[J]. Colloids Surf B Biointerfaces, 2023, 232, 113587.
[1] 潘媛,顾航,肖涵,赵笠君,汤祎熳,葛雯姝. 泛素特异性蛋白酶42调节人脂肪干细胞成骨向分化[J]. 北京大学学报(医学版), 2024, 56(1): 9-16.
[2] 李雨柯,王梅,唐琳,刘玉华,陈晓颖. 不同pH值对脱细胞小肠黏膜下层海绵支架螯合锶离子的影响[J]. 北京大学学报(医学版), 2023, 55(1): 44-51.
[3] 邓艺,张一,李博文,王梅,唐琳,刘玉华. 不同交联剂处理对脱细胞小肠黏膜下层多孔支架的影响[J]. 北京大学学报(医学版), 2022, 54(3): 557-564.
[4] 蓝璘,贺洋,安金刚,张益. 颧骨缺损不同修复重建方法和预后的回顾性分析[J]. 北京大学学报(医学版), 2022, 54(2): 356-362.
[5] 敖英芳,曹宸喜. 解析与重塑软骨组织修复再生微环境[J]. 北京大学学报(医学版), 2021, 53(5): 819-822.
[6] 黄丽东,宫玮玉,董艳梅. 生物活性玻璃对人脐静脉血管内皮细胞增殖及成血管的作用[J]. 北京大学学报(医学版), 2021, 53(2): 371-377.
[7] 王梅, 李博文, 王思雯, 刘玉华. 猪小肠黏膜下层海绵的制备及促成骨作用[J]. 北京大学学报(医学版), 2020, 52(5): 952-958.
[8] 吴唯伊,李博文,刘玉华,王新知. 复层猪小肠黏膜下层可吸收膜的降解性能[J]. 北京大学学报(医学版), 2020, 52(3): 564-569.
[9] 李博文,吴唯伊,唐琳,张一,刘玉华. 改良猪小肠黏膜下层可吸收膜在兔下颌骨缺损早期愈合中的作用[J]. 北京大学学报(医学版), 2019, 51(5): 887-892.
[10] 梁晨,张维宇,胡浩,王起,方志伟,许克新. 膀胱扩大术两种不同术式的疗效及并发症比较[J]. 北京大学学报(医学版), 2019, 51(2): 293-297.
[11] 李榕,陈科龙,王勇,刘云松,周永胜,孙玉春. 骨组织工程支架3D打印系统的建立与支架宏微结构精度的可控性评价[J]. 北京大学学报(医学版), 2019, 51(1): 115-119.
[12] 王子成,程立,吕同德,苏黎,林健,周利群. 炎症因子预处理的脂肪干细胞可明显抑制外周血单个核细胞增殖[J]. 北京大学学报(医学版), 2018, 50(4): 590-594.
[13] 宫玮玉,刘绍清,董艳梅,高学军,陈晓峰. 纳米生物活性玻璃促进兔颅骨临界骨缺损修复[J]. 北京大学学报(医学版), 2018, 50(1): 42-48.
[14] 隋华欣, 吕培军, 王宇光, 王勇, 孙玉春. 低能量激光照射对人脂肪基质细胞增殖分化的影响[J]. 北京大学学报(医学版), 2017, 49(2): 337-343.
[15] 姜蔚然,张晓,刘云松,吴刚,葛严军,周永胜. 骨形态发生蛋白-2-磷酸钙共沉淀支架与人脂肪间充质干细胞构建新型组织工程化骨[J]. 北京大学学报(医学版), 2017, 49(1): 6-015.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 钟金晟, 欧阳翔英, 梅芳, 邓旭亮, 曹采方. 多孔β-磷酸三钙/胶原支架与犬牙周膜细胞三维复合体的构建[J]. 北京大学学报(医学版), 2007, 39(5): 507 -510 .
[2] 张奇, 罗国安, 邓英杰. 均匀设计法制备5-氟尿嘧啶脂质体及其稳定性[J]. 北京大学学报(医学版), 2002, 34(1): 64 -67 .
[3] 管宏, 赵慧云, 沈磊, 李五岭, 王建华, 王春荣, 徐福. 联合应用重组TPO和G-CSF对骨髓抑制性小鼠外周血小板及白细胞恢复的影响[J]. 北京大学学报(医学版), 2001, 33(2): 181 -182 .
[4] 李云芳, 张幼怡, 侯嵘, 董尔丹, 韩启德. 质粒转染对HEK293和DDT1-MF2细胞天然β2-肾上腺素受体表达的影响[J]. 北京大学学报(医学版), 2001, 33(5): 457 -461 .
[5] 柯杨. 乳头状瘤病毒与人类肿瘤[J]. 北京大学学报(医学版), 2002, 34(5): 599 -603 .
[6] 赵建新, 周良, 万远廉. 经十二指肠逆行放置支架治疗恶性幽门梗阻2例[J]. 北京大学学报(医学版), 2002, 34(6): 737 -738 .
[7] 洪涛, 霍勇. COURAGE试验后稳定型心绞痛的治疗策略思考[J]. 北京大学学报(医学版), 2007, 39(6): 562 -564 .
[8] 牟向东, 王广发, 阙呈立, 李桂莲. H3N2型人流行性感冒合并金黄色葡萄球菌败血症及金黄色葡萄球菌肺炎1例[J]. 北京大学学报(医学版), 2007, 39(6): 663 -665 .
[9] 李智岗, 黄景香, 李顺宗, 赵俊京, 时高峰, 梁国庆, 王红光, 韩捧银, 王琦, 谷铁树. 肝转移瘤的血供[J]. 北京大学学报(医学版), 2008, 40(2): 146 -150 .
[10] 冯现竹, 侯平, 朱厉, 于磊, 张宏. 转铁蛋白受体基因多态性与IgA肾病易感性及临床病理表型的相关性[J]. 北京大学学报(医学版), 2008, 40(4): 369 -373 .