北京大学学报(医学版) ›› 2024, Vol. 56 ›› Issue (3): 384-389. doi: 10.19723/j.issn.1671-167X.2024.03.002
侯天姣1,2,周治波3,王竹青1,王梦莹2,4,王斯悦1,2,彭和香1,2,郭煌达1,2,李奕昕1,2,章涵宇1,2,秦雪英1,2,武轶群1,2,郑鸿尘1,李静5,吴涛1,2,*(),朱洪平3,*()
Tianjiao HOU1,2,Zhibo ZHOU3,Zhuqing WANG1,Mengying WANG2,4,Siyue WANG1,2,Hexiang PENG1,2,Huangda GUO1,2,Yixin LI1,2,Hanyu ZHANG1,2,Xueying QIN1,2,Yiqun WU1,2,Hongchen ZHENG1,Jing LI5,Tao WU1,2,*(),Hongping ZHU3,*()
摘要:
目的: 探索亚裔人群中转化生长因子β(transforming growth factor-β,TGF-β)信号通路基因多态性与非综合征型唇裂合并或不合并腭裂(non-syndromic cleft lip with or without cleft palate,NSCL/P)的关联及可能存在的基因-基因、基因-环境交互作用。方法: 选取1 038个NSCL/P核心家系作为研究对象。对TGF-β信号通路上的10个基因的343个单核苷酸多态性(single nucleotide polymorphism,SNP)位点进行了传递不平衡检验(transmission disequilibrium test,TDT),采用条件Logistic回归模型进行基因-基因交互作用分析和基因-环境交互作用分析。研究收集的环境因素包括患儿母亲孕期吸烟、被动吸烟、乙醇摄入量以及维生素使用情况。由于患儿母亲孕期吸烟和饮酒暴露率较低(<3%),因此,仅对母亲孕期被动吸烟及补充多种维生素这两个环境因素与基因之间的交互作用进行了分析。采用Bonferroni法对结果进行多重检验校正,显著性的阈值设置为P=1.46×10-4。结果: 共有4个基因的23个SNP位点与NSCL/P之间存在关联(P<0.05),但经过Bonferroni多重检验校正后,这些关联均未达到统计学显著性水平。经过Bonferroni多重检验校正之后,6对SNP[rs4939874(SMAD2)与rs1864615(TGFBR2),rs2796813(TGFB2)与rs2132298(TGFBR2),rs4147358(SMAD3)与rs1346907(TGFBR2),rs4939874(SMAD2)与rs1019855(TGFBR2),rs4939874(SMAD2)与rs12490466(TGFBR2),以及rs2009112(TGFB2)与rs4075748(TGFBR2)]存在显著的统计学交互作用(P<1.46×10-4),基因-环境交互作用的分析没有达到多重检验校正阈值的显著结果。结论: 未发现TGF-β通路基因多态性与NSCL/P的关联,该通路上部分基因可能通过基因-基因交互作用影响NSCL/P的发病风险。未来仍需其他独立研究的证据支持,以进一步的探索其中潜在的生物学机制。
中图分类号:
1 |
Awotoye W , Mossey PA , Hetmanski JB , et al. Whole-genome sequencing reveals de-novo mutations associated with nonsyndromic cleft lip/palate[J]. Sci Rep, 2022, 12 (1): 11743.
doi: 10.1038/s41598-022-15885-1 |
2 |
Razaghi-Moghadam Z , Namipashaki A , Farahmand S , et al. Systems genetics of nonsyndromic orofacial clefting provides insights into its complex aetiology[J]. Eur J Hum Genet, 2019, 27 (2): 226- 234.
doi: 10.1038/s41431-018-0263-7 |
3 |
Won HJ , Kim JW , Won HS , et al. Gene regulatory networks and signaling pathways in palatogenesis and cleft palate: A comprehensive review[J]. Cells, 2023, 12 (15): 1954.
doi: 10.3390/cells12151954 |
4 |
Li J , Rodriguez G , Han X , et al. Regulatory mechanisms of soft palate development and malformations[J]. J Dent Res, 2019, 98 (9): 959- 967.
doi: 10.1177/0022034519851786 |
5 | Smane-Filipova L , Pilmane M , Akota I . Immunohistochemical analysis of nestin, CD34 and TGFβ3 in facial tissue of children with complete unilateral and bilateral cleft lip and palate[J]. Stomatologija, 2016, 18 (3): 98- 104. |
6 |
Guo Z , Huang C , Ding K , et al. Transforming growth factor beta-3 and environmental factors and cleft lip with/without cleft palate[J]. DNA Cell Biol, 2010, 29 (7): 375- 380.
doi: 10.1089/dna.2009.1009 |
7 |
Zhang W , Shen Z , Xing Y , et al. MiR-106a-5p modulates apoptosis and metabonomics changes by TGF-β/Smad signaling pathway in cleft palate[J]. Exp Cell Res, 2020, 386 (2): 111734.
doi: 10.1016/j.yexcr.2019.111734 |
8 |
Panetta NJ , Gupta DM , Slater BJ , et al. Tissue engineering in cleft palate and other congenital malformations[J]. Pediatr Res, 2008, 63 (5): 545- 551.
doi: 10.1203/PDR.0b013e31816a743e |
9 |
Tang M , Wang Y , Han S , et al. Transforming growth factor-beta 3 gene polymorphisms and nonsyndromic cleft lip and palate risk: A meta-analysis[J]. Genet Test Mol Biomarkers, 2013, 17 (12): 881- 889.
doi: 10.1089/gtmb.2013.0334 |
10 |
Shi X , Wang Q , Sun C , et al. Study on the role of methylation in nonsyndromic cleft lip with or without cleft palate using a monozygotic twin model[J]. Int J Pediatr Otorhinolaryngol, 2021, 143, 110659.
doi: 10.1016/j.ijporl.2021.110659 |
11 | 王竹青, 王苹, 吴雅慧, 等. 中国人群转化生长因子β信号通路上的基因多态性与非综合征型唇腭裂的关联研究[J]. 北京大学学报(医学版), 2015, 47 (3): 384- 389. |
12 |
Beaty TH , Murray JC , Marazita ML , et al. A genome-wide association study of cleft lip with and without cleft palate identifies risk variants near MAFB and ABCA4[J]. Nat Genet, 2010, 42 (6): 525- 529.
doi: 10.1038/ng.580 |
13 |
Weinberg CR . Methods for detection of parent-of-origin effects in genetic studies of case-parents triads[J]. Am J Hum Genet, 1999, 65 (1): 229- 235.
doi: 10.1086/302466 |
14 |
Mossey PA , Little J , Munger RG , et al. Cleft lip and palate[J]. Lancet, 2009, 374 (9703): 1773- 1785.
doi: 10.1016/S0140-6736(09)60695-4 |
15 |
Lewis CW , Jacob LS , Lehmann CU . The primary care pediatrician and the care of children with cleft lip and/or cleft palate[J]. Pediatrics, 2017, 139 (5): e20170628.
doi: 10.1542/peds.2017-0628 |
16 |
Azevedo CMS , Machado RA , Martelli-Júnior H , et al. Exploring GRHL3 polymorphisms and SNP-SNP interactions in the risk of non-syndromic oral clefts in the Brazilian population[J]. Oral Dis, 2020, 26 (1): 145- 151.
doi: 10.1111/odi.13204 |
17 |
郝嫣汝, 王岩, 孙晓梅. 非综合征性唇腭裂环境因素的研究进展[J]. 中华整形外科杂志, 2019, 35 (7): 702- 705.
doi: 10.3760/cma.j.issn.1009-4598.2019.07.017 |
18 |
Lara LDS , Coletta RD , Assis MR , et al. Exploring the role of the WNT5A rs566926 polymorphism and its interactions in non-syndromic orofacial cleft: A multicenter study in Brazil[J]. J Appl Oral Sci, 2024, 32, e20230353.
doi: 10.1590/1678-7757-2023-0353 |
19 |
Li M , Wang H . Pathway analysis identified a significant association between cell-cell adherens junctions-related genes and non-syndromic cleft lip/palate in 895 Asian case-parent trios[J]. Arch Oral Biol, 2022, 136, 105384.
doi: 10.1016/j.archoralbio.2022.105384 |
20 | Yapijakis C , Davaria S , Gintoni I , et al. The impact of genetic variability of TGF-beta signaling biomarkers in major craniofacial syndromes[J]. Adv Exp Med Biol, 2023, 1423, 187- 191. |
21 |
Saroya G , Hu J , Hu M , et al. Periderm fate during palatogenesis: TGF-β and periderm dedifferentiation[J]. J Dent Res, 2023, 102 (4): 459- 466.
doi: 10.1177/00220345221146454 |
22 |
Derynck R , Budi EH . Specificity, versatility, and control of TGF-β family signaling[J]. Sci Signal, 2019, 12 (570): eaav5183.
doi: 10.1126/scisignal.aav5183 |
23 |
Chen PY , Qin L , Simons M . TGF-β signaling pathways in human health and disease[J]. Front Mol Biosci, 2023, 10, 1113061.
doi: 10.3389/fmolb.2023.1113061 |
24 |
Vander AA , Cao J , Li X . TGF-β receptors: In and beyond TGF-β signaling[J]. Cell Signal, 2018, 52, 112- 120.
doi: 10.1016/j.cellsig.2018.09.002 |
25 |
Hata A , Chen YG . TGF-β signaling from receptors to smads[J]. Cold Spring Harb Perspect Biol, 2016, 8 (9): a022061.
doi: 10.1101/cshperspect.a022061 |
26 |
Lin E , Kuo PH , Liu YL , et al. Transforming growth factor-β signaling pathway-associated genes SMAD2 and TGFBR2 are implicated in metabolic syndrome in a Taiwanese population[J]. Sci Rep, 2017, 7 (1): 13589.
doi: 10.1038/s41598-017-14025-4 |
27 |
Babai A , Irving M . Orofacial clefts: Genetics of cleft lip and palate[J]. Genes (Basel), 2023, 14 (8): 1603.
doi: 10.3390/genes14081603 |
[1] | 薛恩慈, 陈曦, 王雪珩, 王斯悦, 王梦莹, 李劲, 秦雪英, 武轶群, 李楠, 李静, 周治波, 朱洪平, 吴涛, 陈大方, 胡永华. 中国人群非综合征型唇裂伴或不伴腭裂的单核苷酸多态性遗传度[J]. 北京大学学报(医学版), 2024, 56(5): 775-780. |
[2] | 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,周治波,朱洪平,吴涛,胡永华. WNT信号通路基因位点单体型与中国汉族人群非综合征型唇腭裂发病风险的关联[J]. 北京大学学报(医学版), 2022, 54(3): 394-399. |
[3] | 王梦莹,李文咏,周仁,王斯悦,刘冬静,郑鸿尘,李静,李楠,周治波,朱洪平,吴涛,胡永华. WNT代谢通路相关基因与中国人群非综合征型唇腭裂发病风险的交互作用[J]. 北京大学学报(医学版), 2020, 52(5): 815-820. |
[4] | 李文咏,王梦莹,周仁,王斯悦,郑鸿尘,朱洪平,周治波,吴涛,王红,石冰. 中国人群Hedgehog通路基因与非综合征型唇腭裂的亲源效应[J]. 北京大学学报(医学版), 2020, 52(5): 809-814. |
[5] | 周仁,郑鸿尘,李文咏,王梦莹,王斯悦,李楠,李静,周治波,吴涛,朱洪平. 利用二代测序数据探索SPRY基因家族与中国人群非综合征型唇腭裂的关联[J]. 北京大学学报(医学版), 2019, 51(3): 564-570. |
[6] | 张杰铌,宋凤岐,周绍楠,郑晖,彭丽颖,张倩,赵望泓,张韬文,李巍然,周治波,林久祥,陈峰. 中国唇腭裂患者Sonic hedgehog信号通路相关单核苷酸多态性的分析[J]. 北京大学学报(医学版), 2019, 51(3): 556-563. |
|