北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (5): 892-898. doi: 10.19723/j.issn.1671-167X.2018.05.022

• 论著 • 上一篇    下一篇

一种切削法制作的数字化种植手术导板加工精度评价

柴金友1,刘建彰1,王兵2,屈健2,孙振2,高文慧2,郭天晧2,冯海兰1,潘韶霞1△   

  1. (北京大学口腔医学院·口腔医院,1.修复科,2.义齿加工中心国家口腔疾病临床医学研究中心口腔数字化医疗技术和材料国家工程实验室口腔数字医学北京市重点实验室, 北京100081)
  • 出版日期:2018-10-18 发布日期:2018-10-18
  • 通讯作者: 潘韶霞 E-mail:panshaoxia@vip.163.com
  • 基金资助:
     北京大学口腔医学院临床新技术新疗法项目基金(PKUSSNCT-16A11)

Evaluation of the fabrication deviation of a kind of milling digital implant surgical guides#br#

CHAI Jin-you1, LIU Jian-zhang1, WANG Bing2, QU Jian2, SUN Zhen2, GAO Wen-hui2, GUO Tian-hao2, FENG Hai-lan1, PAN Shao-xia1△   

  1. (1. Department of Prosthodontics, 2. Dental Laboratory, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2018-10-18 Published:2018-10-18
  • Contact: PAN Shao-xia E-mail:panshaoxia@vip.163.com
  • Supported by:
    Supported by The Program for New Clinical Techniques

摘要: 目的:评价一种切削法制作的数字化种植手术导板(Organical Dental Implant,ODI系统,R+K,德国)的加工误差。方法:试验分为两部分:(1)体外试验:通过体外模拟数字化种植手术导板的设计和加工制作,在切削加工完成后将导板进行模型扫描获得虚拟三维数据,导入设计软件融合后直接测量加工误差作为金标准,A和B两名试验者分别用检验平台测量10次加工误差,评价检验平台用于测量的可靠性。(2)临床试验:通过检验平台检验12例临床病例导板的加工精度,分析误差的大小及可能影响加工误差的因素。结果:体外试验中,两名试验者对8枚种植体导环参考点测量的标准差均小于0.4 mm,角度测量的标准差均小于0.71°。两名试验者对于每个种植体的检验结果差异均无统计学意义,对于导环参考点误差测量结果均较软件测量结果大(配对t检验,P<0.05),角度误差的测量结果差异无统计学意义(配对t检验,P>0.05)。临床试验中,12例导板共45枚种植体导环参考点加工误差为(1.06±0.29) mm(0.42~1.75 mm),根尖误差为(1.12±0.48) mm(0.41~2.44 mm),角度误差为1.42°±0.70°(0.29°~2.96°)。结论:导板的切削加工过程中也会存在一定误差,ODI系统的检验平台是测量加工误差的可靠工具。种植导板加工误差与种植体植入位置误差间的关系还需进一步研究。

关键词: 牙种植, 骨内, 计算机辅助设计, 种植导板, 加工误差

Abstract: Objective: To evaluate the deviation of digital implant surgical guides during fabrication process in the Organical Dental Implant (ODI) system. Methods: This study included two parts. The first part was the in vitro study. A resin block with a diagnostic template was used for the planning. After cone beam computed tomography (CBCT) scanning, a surgical guide with eight implants was virtually designed using the ODI system. The guide was milled by a 5-axial numerical controlled milling machine, and an optical scanning was taken to digitalize the guide to a standard tessellation language (STL) form. The STL data were then imported into an ODI software and registered with the original design. The deviation of the sleeves between the design and the STL was measured in the ODI software and set as the golden standard. Then the ODI examination table was used to measure the deviation of the guide during fabrication. Examiners A and B measured 10 times separately. The reliability and the validity of the examination table was calculated. The second part was the in vivo study: The deviation during fabrication of 12 guides designed and fabricated by the ODI system were measured using the examination table. Results: The standard deviation of the deviation measured using the examination table by examiners A and B were all below 0.40 mm (for the shell reference points) and 0.71 degree (for the angles). No significant difference was found between the two examiners for any implant sites. The result of the examination table was larger than that of the software for the shell reference point (t-test, P<0.05), but no significant difference was found for the angle deviation (t-test, P>0.05). The 45 implants positions in the 12 guides for the in vivo study were examined using the examination table. The deviations at the shell reference points were (1.06±0.29) mm (0.42-1.75 mm), and at the implant tip were (1.12±0.48) mm (0.41-2.44 mm). The angle deviations were (1.42±0.70) degree (0.29-2.96 degree). Conclusion: Deviation is unavoidable during the fabrication process of the guides. The examination table of the ODI system is a reliable and valid tool to measure the deviation during fabrication of the ODI guides. More studies should be designed to research the relationship between the fabrication deviation and the implant insertion deviation.

Key words: Dental implantation, endosseous, Computer-aided design, Implant surgical guide, Fabrication deviation

中图分类号: 

  •  
[1] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[2] 王聪伟,高敏,于尧,章文博,彭歆. 游离腓骨瓣修复下颌骨缺损术后义齿修复的临床分析[J]. 北京大学学报(医学版), 2024, 56(1): 66-73.
[3] 李穗,马雯洁,王时敏,丁茜,孙瑶,张磊. 上前牙种植单冠修复体切导的数字化设计正确度[J]. 北京大学学报(医学版), 2024, 56(1): 81-87.
[4] 刘晓强,周寅. 牙种植同期植骨术围术期高血压的相关危险因素[J]. 北京大学学报(医学版), 2024, 56(1): 93-98.
[5] 丁茜,李文锦,孙丰博,谷景华,林元华,张磊. 表面处理对氧化钇和氧化镁稳定的氧化锆种植体晶相及断裂强度的影响[J]. 北京大学学报(医学版), 2023, 55(4): 721-728.
[6] 欧蒙恩,丁云,唐卫峰,周永胜. 基台边缘-牙冠的平台转移结构中粘接剂流动的三维有限元分析[J]. 北京大学学报(医学版), 2023, 55(3): 548-552.
[7] 孙菲,刘建,李思琪,危伊萍,胡文杰,王翠. 种植体黏膜下微生物在健康种植体和种植体周炎中的构成与差异:一项横断面研究[J]. 北京大学学报(医学版), 2023, 55(1): 30-37.
[8] 罗昊,田福聪,王晓燕. 不同椅旁可切削修复材料序列抛光时间及表面粗糙度与光泽度的比较[J]. 北京大学学报(医学版), 2022, 54(3): 565-571.
[9] 冯莎蔚,国慧,王勇,赵一姣,刘鹤. 乳牙数字化参考牙冠模型的初步构建[J]. 北京大学学报(医学版), 2022, 54(2): 327-334.
[10] 李怡,王丽瑜,刘晓强,周倜,吕季喆,谭建国. 不同材料及厚度椅旁CAD/CAM瓷贴面的边缘特征[J]. 北京大学学报(医学版), 2022, 54(1): 140-145.
[11] 王鹃,尉华杰,孙井德,邱立新. 预成刚性连接杆用于无牙颌种植即刻印模制取的应用评价[J]. 北京大学学报(医学版), 2022, 54(1): 187-192.
[12] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[13] 梁峰,吴敏节,邹立东. 后牙区单牙种植修复5年后的临床修复疗效观察[J]. 北京大学学报(医学版), 2021, 53(5): 970-976.
[14] 刘晓强,杨洋,周建锋,刘建彰,谭建国. 640例单牙种植术对血压和心率影响的队列研究[J]. 北京大学学报(医学版), 2021, 53(2): 390-395.
[15] 周培茹, 蒋析, 华红. 口腔黏膜病患者口腔种植的时机及注意事项[J]. 北京大学学报(医学版), 2021, 53(1): 5-8.
Viewed
Full text
534
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 0 8 0 526

  From Others local
  Times 128 406
  Rate 24% 76%

Abstract
1128
Just accepted Online first Issue
9 0 1119
  From Others local
  Times 1121 7
  Rate 99% 1%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!