北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (2): 327-334. doi: 10.19723/j.issn.1671-167X.2019.02.024

• 论著 • 上一篇    下一篇

一体化玻璃纤维桩修复漏斗状根管粘接强度的体外研究

张媛1,韩建民2,刘林1,邓旭亮3,()   

  1. 1. 首都医科大学附属北京安贞医院口腔科,北京 100029
    2. 北京大学口腔医学院·口腔医院, 口腔材料实验室, 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
    3. 北京大学口腔医学院·口腔医院, 特诊科 国家口腔疾病临床医学研究中心 口腔数字化医疗技术和材料国家工程实验室 口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2018-12-05 出版日期:2019-04-18 发布日期:2019-04-26
  • 通讯作者: 邓旭亮 E-mail:kqdengxuliang@bjmu.edu.cn
  • 基金资助:
    国家重点研发计划项目(2017YFC1104301/4300)

Study of bond strength of one-piece glass fiber posts-and-cores with flared root canals in vitro

Yuan ZHANG1,Jian-min HAN2,Lin LIU1,Xu-liang DENG3,()   

  1. 1. Department of Stomatology, Beijing Anzhen Hospital, Capital Medical University, Beijing 100029, China
    2. Department of Dental Materials, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    3. Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2018-12-05 Online:2019-04-18 Published:2019-04-26
  • Contact: Xu-liang DENG E-mail:kqdengxuliang@bjmu.edu.cn
  • Supported by:
    National Key Research and Development Program of China(2017YFC1104301/4300)

RICH HTML

  

摘要:

目的: 比较3种纤维桩(CAD/CAM一体化玻璃纤维桩、预成型玻璃纤维桩、光固化可塑性纤维桩)对漏斗状根管的粘接强度及温度循环对其粘接强度的影响。方法: 90颗单根离体牙随机分为3组,分别采用CAD/CAM一体化玻璃纤维桩核、同种材料制成的预成型玻璃纤维桩、光固化可塑性纤维桩修复,粘结完成后,储存在37 ℃恒温去离子水中7 d,每组随机选取15颗离体牙进行温度循环。使用精密片切机制备微推出试验试件,万能力学试验机测试微推出粘接强度并使用体视显微镜分析破坏形式。结果: CAD/CAM一体化玻璃纤维桩核组:温度循环前根颈部、根中部、根尖部的粘接强度分别为(9.58±2.67) MPa、(8.62±2.62) MPa、(8.21±2.48) MPa,温度循环后根颈部、根中部、根尖部的粘接强度分别为(8.14±3.19) MPa、(6.43±2.47) MPa、(6.45±3.20) MPa;预成型纤维桩组:温度循环前根颈部、根中部、根尖部的粘接强度分别为(3.89±2.04) MPa、(4.83±1.23) MPa、(4.67±1.86) MPa,温度循环后根颈部、根中部、根尖部的粘接强度分别为(6.18±1.61) MPa、(5.15±1.94) MPa、(6.39±2.87) MPa;光固化可塑性纤维桩组:温度循环前根颈部、根中部、根尖部的粘接强度分别为(4.05±2.41) MPa、(1.75±1.70) MPa、(2.60±2.34) MPa,温度循环后根颈部、根中部、根尖部的粘接强度分别为(5.04±2.72) MPa、(1.96±1.70) MPa、(1.34±0.92) MPa。桩核类型、根管部位对粘接强度的影响具有统计学意义(P<0.05),与其他两组相比,一体化玻璃纤维桩核在根颈部、根中部、根尖部均具有最高的粘接强度。温度循环对3种纤维桩粘接强度的影响无统计学意义(P>0.05)。结论: 一体化玻璃纤维桩核可能具有更好的粘接强度,粘接性能较好。

关键词: 一体化纤维桩核, 微推出, 温度老化, 粘接强度

Abstract:

Objective: To compare the effects of three kinds of fiber posts (CAD/CAM one-piece glass fiber posts-and-cores, prefabricated glass fiber post and light curing plastic fiber post) on the bond strength of flared root canals and the effect of thermal cycling on their bond strength.Methods: Extracted human single teeth (n=90) were endodontically treated and randomly divided into three groups (n = 30 each). The teeth were restored by three kinds of fiber post: CAD/CAM one-piece glass fiber posts-and-cores, prefabricated posts and light curing plastic fiber post. Following post cementation, the specimens were stored in distilled water at 37 ℃ for 7 days. Half bonded specimens of each group were submitted to thermal cycling (6 000 times, 5 to 55 ℃) prior to micro-push-out bond strength test. Fabrication of micro-push-out bond strength test specimens was conducted by precision slicing machine. The micro-push-out bond strength was tested using a universal testing machine, and the failure modes were examined with a stereomicroscope.Results: In CAD/CAM one-piece glass fiber posts-and-cores group, the bond strength of cervical, middle and apical was (9.58±2.67) MPa,(8.62±2.62) MPa,(8.21±2.48) MPa respectively before thermal cycling, and after thermal cycling the bond strength of cervical, middle and apical was (8.14±3.19) MPa,(6.43±2.47) MPa,(6.45±3.20) MPa respectively. In prefabricated posts group, the bonding strength of cervical, middle and apical was (3.89±2.04) MPa,(4.83±1.23) MPa,(4.67±1.86) MPa respectively before thermal cycling, and after thermal cycling the bond strength of cervical, middle and apical was (6.18±1.61) MPa,(5.15±1.94) MPa,(6.39±2.87) MPa respectively. In light curing plastic fiber post group, the bond strength of cervical, middle and apical before thermal cycling was (4.05±2.41) MPa,(1.75±1.70) MPa,(2.60±2.34) MPa respectively, and after thermal cycling the bond strength of cervical, middle and apical was (5.04±2.72) MPa,(1.96±1.70) MPa,(1.34±0.92) MPa respectively. Postal types and root canal regions were found to significantly affect the push-out bond strength. Compared with the other two groups, the one-piece glass fiber posts-and-cores had the highest bonding strength in the cervical, middle and apical. Temperature cycling has no significant effect on the micro push-out bond strength of three kinds of fiber posts.Conclusion: One-piece glass fiber posts-and-cores has better bonding strength and excellent bonding performance.

Key words: One-piece glass fiber posts-and-cores, Micro push-out test, Temperature aging, Bond strength

中图分类号: 

  • R783.6

图1

试件测量示意图"

图2

微推出实验模式图"

表1

3种类型纤维桩与根管牙本质的微推出粘接强度及破坏模式"

Thermal cycling (TC) Group specimens(n=540) Region Bond strength/MPa,x?±s Failure modes
M AD AP C
Before TC One-piece post(n=30) 1 9.58±2.67
One-piece post(n=30) 2 8.62±2.62 32(36.56%) 57(63.33%) 1(1.11%) 0
One-piece post(n=30) 3 8.21±2.48
OYAPost(n=30) 1 3.89±2.04
OYAPost(n=30) 2 4.83±1.23 60(66.67%) 15(16.67%) 15(16.67%) 0
OYAPost(n=30) 3 4.67±1.86
Everstick post(n=30) 1 4.05±2.41
Everstick post(n=30) 2 1.75±1.70 66(73.33%) 24(26.67%) 0 0
Everstick post(n=30) 3 2.60±2.34
After TC One-piece post(n=30) 1 8.14±3.19
One-piece post(n=30) 2 6.43±2.47 31(34.44%) 59(65.56%) 0 0
One-piece post(n=30) 3 6.45±3.20
OYAPost(n=30) 1 6.18±1.61
OYAPost(n=30) 2 5.15±1.94 66(73.33%) 12(13.33%) 12(13.33%) 0
OYAPost(n=30) 3 6.39±2.87
Everstick post(n=30) 1 5.04±2.72
Everstick post(n=30) 2 1.96±1.70 68(75.56%) 22(24.44%) 0 0
Everstick post(n=30) 3 1.34±0.92

表2

一体化纤维桩、预成型纤维桩、everstick可塑性纤维桩微推出粘接强度的单因素方差分析"

Thermal cycling(TC) Group Between group Mean difference P 95% confidence interval
Lower bound Upper bound
Before TC One-piece post 1 OYAPost 1 5.941 884 0 0 3.625 667 8.258 101
Everstick post 1 5.529 538 2 0 3.638 355 7.420 722
One-piece post 2 OYAPost 2 3.756 727 0 0.002 1.440 510 6.072 944
Everstick post 2 6.586 674 7 0 4.695 491 8.477 858
One-piece post 3 OYAPost 3 3.868 457 1 0.001 1.552 240 6.184 674
Everstick post 3 5.934 455 4 0 4.043 272 7.825 639
OYAPost 1 Everstick post 1 -0.412 345 7 0.668 -2.303 529 1.478 838
OYAPost 2 Everstick post 2 2.829 947 7 0.003 0.938 764 4.721 131
OYAPost 3 Everstick post 3 2.065 998 3 0.032 0.174 815 3.957 182
After TC One-piece post 1 OYAPost 1 1.957 097 3 0.001 0.761 008 3.153 187
Everstick post 1 3.105 304 5 0 1.909 215 4.301 394
One-piece post 2 OYAPost 2 1.281 611 0 0.036 0.085 522 2.477 700
Everstick post 2 4.458 778 0 0 3.262 689 5.654 867
One-piece post 3 OYAPost 3 0.050 721 8 0.934 -1.145 368 1.246 811
Everstick post 3 5.101 065 0 0 3.904 976 6.297 154
OYAPost 1 Everstick post 1 1.148 207 2 0.060 -0.047 882 2.344 297
OYAPost 2 Everstick post 2 3.177 167 0 0 1.981 078 4.373 256
OYAPost 3 Everstick post 3 5.050 343 2 0 3.854 254 6.246 433

表3

不同部位纤维桩与根管牙本质间粘接强度多因素方差分析"

Items TypeⅢ SS Standard deviation F P
Correction model 1 983.714 116.689 21.025 0.000
Thermal cycling 0.373 0.373 0.067 0.796
Postal types 1 373.119 686.560 123.705 0.000
Root canal regions 100.863 50.432 9.087 0.000
Thermal cycling * Root canal regions 20.647 10.324 1.860 0.157
Thermal cycling * Postal types 111.321 55.660 10.029 0.000
Root canal regions* Postal types 100.836 25.209 4.542 0.001
Thermal cycling * Postal types * Root canal regions 18.048 4.512 0.813 0.517

图3

预成型纤维桩试件"

图4

一体化纤维桩试件"

图5

everstick可塑性纤维桩试件"

图6

一体化断裂模式"

图7

一体化断裂模式"

图8

everstick断裂模式"

图9

预成纤维桩断裂模式"

[1] Paolone G, Saracinelli M, Devoto W , et al. Esthetic direct restorations in endodontically treated anterior teeth[J]. Eur J Esthet Dent, 2013,8(8):44-67.
[2] Lu JH . Observation of fiber post repair failure[J]. China Modern Medicine, 2013,20(17):191-192.
[3] 邹霖, 于晋, 丁莹 , 等. 两种树脂桩修复方法对漏斗状根管粘结强度的影响[J]. 暨南大学学报(自然科学与医学版), 2015,36(1):56-61
[4] Savi A, Manfredi M, Tamani M , et al. Use of customized fiber posts for the aesthetic treatment of severely compromised teeth: a case report[J]. Dent Traumatol, 2010,24(6):671-675.
[5] Vilkinis V, Juozas Žilinskas . Direct composite resin crown fabrication on a custom formed root canal post: EverStickPOST[J]. Stomatologija, 2016,18(1):32-36.
[6] 李智, 王新知, 高承志 , 等. 计算机辅助设计与制作一体化玻璃纤维桩核修复漏斗状根管的抗疲劳和抗折性能[J]. 北京大学学报(医学版), 2013,45(1):59-63.
[7] Gomes GM, Rezende ECD, Gomes OMM , et al. Influence of the resin cement thickness on bond strength and gap formation of fiber posts bonded to root dentin[J]. J Adhes Dent, 2014,16(1):71-78.
[8] Trushkowsky RD . Restoration of endodontically treated teeth: criteria and technique considerations[J]. Quintessence Int, 2014,45(7):557-559.
[9] Visuttiwattanakorn P, Suputtamongkol K, Angkoonsit D , et al. Microtensile bond strength of repaired indirect resin composite[J]. J Adv Prosthodont, 2017,9(1):38-44.
doi: 10.4047/jap.2017.9.1.38
[10] Reis GR, Silva FP, Oliveiraogliari A , et al. An experimental thermally deposited coating for improved bonding to glass-fiber posts[J]. J Adhes Dent, 2017,19(1):49-57.
[11] 苏靖 . 粘接层厚度对纤维桩粘接性能影响的实验研究及有限元分析[D]. 2015: 1-8.
[12] Hou QQ, Gao YM, Sun L . Influence of fiber posts on the fracture resistance of endodontically treated premolars with different dental defects[J]. Int J Oral Sci, 2013,5(3):167-171.
doi: 10.1038/ijos.2013.52
[13] Gomes GM, Gomes OM, Reis A , et al. Effect of operator experience on the outcome of fiber post cementation with different resin cements[J]. Oper Dent, 2013,38(5):555-564.
doi: 10.2341/11-494-L
[14] Skupien JA, Sarkisonofre R, Cenci MS , et al. A systematic review of factors associated with the retention of glass fiber posts[J]. Braz Oral Res, 2015,29(1):1-8.
[15] Mousavinasab SM, Farhadi A, Shabanian M . Effect of storage time, thermocycling and resin coating on durability of dentin bonding systems[J]. Dent Res J (Isfahan), 2009,6(1):29-37.
[16] Cekic-Nagas I, Sukuroglu E, Canay S . Does the surface treatment affect the bond strength of various fibre-post systems to resin-core materials[J]. J Dent, 2011,39(2):171-179.
doi: 10.1016/j.jdent.2010.11.008
[17] Erkut S, Gulsahi K, Caglar A , et al. Micro leakage in overflared root canals restored with different fiber reinforced dowels[J]. Oper Dent, 2008,33(1):96-105.
doi: 10.2341/07-47
[18] Zicari F, Couthino E, De Munck J , et al. Bonding effectiveness and sealing ability of fiber-post bonding[J]. Dent Mater, 2008,24(7):967-977.
doi: 10.1016/j.dental.2007.11.011
[19] Mjor IA, Smith MR, Ferrari M , et al. The structure of dentine in the apical region of human teeth[J]. Int Endod J, 2001,34(5):346-353.
doi: 10.1046/j.1365-2591.2001.00393.x
[20] Kern M, Barloi A, Yang B . Surface conditioning influences zirconia ceramic bonding[J]. J Dent Res, 2009,88(9):817-822.
doi: 10.1177/0022034509340881
[21] Matsui N, Takagaki T, Sadr A , et al. The role of MDP in a bonding resin of a two-step self-etching adhesive system[J]. Dent Mater J, 2015,34(2):227-233.
doi: 10.4012/dmj.2014-205
[22] Deng D, Huang X, Huang C , et al. Effects of chlorhexidine on bonding durability of different adhesive systems using a novel thermoscycling method[J]. Aust Dent J, 2013,58(2):148-155.
doi: 10.1111/adj.2013.58.issue-2
[23] Albashaireh ZS, Ghazal M, Kern M . Effects of endodontic post surface treatment, dentin conditioning, and artificial aging on the retention of glass fiber-reinforced composite resin posts[J]. J Prosthet Dent, 2010,103(1):31-39.
doi: 10.1016/S0022-3913(09)60212-2
[24] Vichi A, Vano M, Ferrari M . The effect of different storage conditions and duration on the fracture strength of three types of translucent fiber posts[J]. Dent Mater, 2008,24(6):832-838.
doi: 10.1016/j.dental.2007.09.011
[25] Bell AML, Lassila LVJ, Kangasniemi I , et al. Bonding of fibre-reinforced composite post to root canal dentin[J]. J Dent, 2005,33(7):533-539.
doi: 10.1016/j.jdent.2004.11.014
[1] 李秋菊,宫玮玉,董艳梅. 生物活性玻璃预处理对牙本质粘接界面耐久性的影响[J]. 北京大学学报(医学版), 2020, 52(5): 931-937.
[2] 唐仁韬,李欣海,于江利,冯琳,高学军. 复合树脂与玻璃陶瓷微拉伸粘接强度的体外研究[J]. 北京大学学报(医学版), 2020, 52(4): 755-761.
[3] 陈倩,王新知. 改良式微推出试验评价化学处理玻璃纤维桩表面后与树脂水门汀的粘接强度[J]. 北京大学学报(医学版), 2019, 51(5): 968-972.
[4] 朱晓鸣,齐璇,李德利,张玉玮,李和平,谭建国. 不同温度新型大气压冷等离子体处理对牙本质粘接强度的影响[J]. 北京大学学报(医学版), 2019, 51(1): 43-48.
[5] 廖宇,刘晓强,陈立,周建锋,谭建国. 不同表面处理方法对氧化锆与树脂水门汀粘接强度的影响[J]. 北京大学学报(医学版), 2018, 50(1): 53-57.
[6] 王月,梁宇红. 次氯酸钠溶液表面处理对牙本质粘接强度的影响[J]. 北京大学学报(医学版), 2017, 49(1): 105-109.
[7] 陈倩,苏永亮,蔡晴,白云洋,苏靖,王新知. 玻璃纤维桩表面经聚多巴胺或硅烷化处理后的微推出粘接强度对比研究[J]. 北京大学学报(医学版), 2015, 47(6): 1005-1009.
[8] 潘徽,程灿,胡嘉,刘鹤,孙志辉. 聚乳酸可吸收根管桩与3种粘接剂的粘接强度[J]. 北京大学学报(医学版), 2015, 47(6): 990-993.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!