北京大学学报(医学版) ›› 2019, Vol. 51 ›› Issue (3): 602-608. doi: 10.19723/j.issn.1671-167X.2019.03.034
• 技术方法 • 上一篇
唐雯1△(),高峻逸2,马辛宇2,3,张超贺2,马连韬2,3,王亚沙2,4△()
Wen TANG1△(),Jun-yi GAO2,Xin-yu MA2,3,Chao-he ZHANG2,Lian-tao MA2,3,Ya-sha WANG2,4△()
摘要: 目的 应用深度学习模型循环神经网络(recurrent neural network,RNN)及其变体门控循环单元(gated recurrent unit,GRU),基于临床真实数据,构建腹膜透析临床预后预测模型,并比较其与医学研究中常用的逻辑回归(logistic regression, LR)模型的预测性能,探索预测结果中可能的医学意义。方法 使用北京大学第三医院腹膜透析门诊的常规诊疗数据,基于患者在开始透析时的基线数据、随访数据和预后数据构建RNN和GRU预测模型。使用受试者工作特征曲线下面积(area under the ROC curve,AUROC)、召回率(recall)、F1分数(F1-score)三个指标在测试集上评价比较模型对患者死亡风险的预测效果。结果 共纳入656例患者,其中死亡患者261例,共计13 091条诊断记录。经过十折交叉验证调整超参数并在单独的测试集测试结果显示,LR模型、RNN模型、GRU模型的AUROC分别为0.701 4、0.786 0、0.814 7,RNN和GRU模型的预测性能显著优于传统的LR模型。在召回率和F1分数方面,RNN和GRU模型的性能也均显著优于LR模型,且GRU模型表现最好。进一步分析显示GRU模型在不同预测窗口下对于不同死因或相同死因的召回率不尽相同。结论 RNN模型(尤其是GRU模型)相比于传统医学研究所使用的LR模型,对于腹膜透析临床预后预测具有更佳效果,可能有助于医生早期干预,提高医疗质量,具有很强的临床应用价值。
中图分类号:
[1] |
Li KT, Chow KM , Van de Luijtgaarden MW, et al. Changes in the worldwide epidemiology of peritoneal dialysis[J]. Nat Rev Nephrol, 2017,13(2):90-103.
doi: 10.1038/nrneph.2016.181 |
[2] | Lee C, Luo Z, Ngiam KY , et al. Big healthcare data analytics: Challenges and applications[M] //Handbook of large-scale distributed computing in smart healthcare. German: Springer, 2017: 11-41. |
[3] | Schalkoff RJ . Artificial neural networks[M]. New York: McGraw-Hill, 1997. |
[4] | Ma F, Chitta R, Zhou J, et al. Dipole: diagnosis prediction in healthcare via attention-based bidirectional recurrent neural networks [C]. Proceedings of the 23rd ACM SIGKDD international conference on knowledge discovery and data mining, 2017: 1903-1911. |
[5] | Khitan Z, Shapiro AP, Shah PT , et al. Predicting adverse outcomes in chronic kidney disease using machine learning methods: data from the modification of diet in renal disease[J]. Marshall J Med, 2017,3(4):67. |
[6] | Korchiyne R, Farssi SM, Sbihi A , et al. A combined method of fractal and GLCM features for MRI and CT scan images classification[J]. Signal & Image Processing: An International Journal, 2014,5(4):85. |
[7] | Lipton ZC, Berkowitz J , Elkan C. A critical review of recurrent neural networks for sequence learning [J/OL]. ( 2015 -10-17)[2019-01-10]. https://arxiv.org/pdf/1506.00019.pdf. |
[8] | Chung J, Gulcehre C, Cho KH , et al. Empirical evaluation of gated recurrent neural networks on sequence modeling [J/OL]. ( 2014 -12-11)[2019-01-10]. https://arxiv.org/pdf/1412.3555.pdf. |
[1] | 欧俊永,倪坤明,马潞林,王国良,颜野,杨斌,李庚午,宋昊东,陆敏,叶剑飞,张树栋. 肌层浸润性膀胱癌合并中高危前列腺癌患者的预后因素[J]. 北京大学学报(医学版), 2024, 56(4): 582-588. |
[2] | 刘帅,刘磊,刘茁,张帆,马潞林,田晓军,侯小飞,王国良,赵磊,张树栋. 伴静脉癌栓的肾上腺皮质癌的临床治疗及预后[J]. 北京大学学报(医学版), 2024, 56(4): 624-630. |
[3] | 虞乐,邓绍晖,张帆,颜野,叶剑飞,张树栋. 具有低度恶性潜能的多房囊性肾肿瘤的临床病理特征及预后[J]. 北京大学学报(医学版), 2024, 56(4): 661-666. |
[4] | 周泽臻,邓绍晖,颜野,张帆,郝一昌,葛力源,张洪宪,王国良,张树栋. 非转移性T3a肾细胞癌患者3年肿瘤特异性生存期预测[J]. 北京大学学报(医学版), 2024, 56(4): 673-679. |
[5] | 方杨毅,李强,黄志高,陆敏,洪锴,张树栋. 睾丸鞘膜高分化乳头状间皮肿瘤1例[J]. 北京大学学报(医学版), 2024, 56(4): 741-744. |
[6] | 曾媛媛,谢云,陈道南,王瑞兰. 脓毒症患者发生正常甲状腺性病态综合征的相关因素[J]. 北京大学学报(医学版), 2024, 56(3): 526-532. |
[7] | 侯婉音,董捷. 腹膜透析患者获得性肾囊肿出血3例[J]. 北京大学学报(医学版), 2024, 56(3): 546-550. |
[8] | 苏俊琪,王晓颖,孙志强. 舌鳞状细胞癌根治性切除术后患者预后预测列线图的构建与验证[J]. 北京大学学报(医学版), 2024, 56(1): 120-130. |
[9] | 李建斌,吕梦娜,池强,彭一琳,刘鹏程,吴锐. 干燥综合征患者发生重症新型冠状病毒肺炎的早期预测[J]. 北京大学学报(医学版), 2023, 55(6): 1007-1012. |
[10] | 刘欢锐,彭祥,李森林,苟欣. 基于HER-2相关基因构建风险模型用于膀胱癌生存预后评估[J]. 北京大学学报(医学版), 2023, 55(5): 793-801. |
[11] | 薛子璇,唐世英,邱敏,刘承,田晓军,陆敏,董靖晗,马潞林,张树栋. 青年肾肿瘤伴瘤栓的临床病理特征及预后分析[J]. 北京大学学报(医学版), 2023, 55(5): 802-811. |
[12] | 卢汉,张建运,杨榕,徐乐,李庆祥,郭玉兴,郭传瑸. 下颌牙龈鳞状细胞癌患者预后的影响因素[J]. 北京大学学报(医学版), 2023, 55(4): 702-707. |
[13] | 乔婕,芦丽霞,何玉婷,门春翠,楚新新,武蓓,赵慧萍,王梅. 真菌性腹膜透析导管出口感染合并隧道感染1例[J]. 北京大学学报(医学版), 2023, 55(4): 748-754. |
[14] | 时云飞,王豪杰,刘卫平,米岚,龙孟平,刘雁飞,赖玉梅,周立新,刁新婷,李向红. 血管免疫母细胞性T细胞淋巴瘤临床与分子病理学特征分析[J]. 北京大学学报(医学版), 2023, 55(3): 521-529. |
[15] | 朱晓娟,张虹,张爽,李东,李鑫,徐玲,李挺. 人表皮生长因子受体2低表达乳腺癌的临床病理学特征及预后[J]. 北京大学学报(医学版), 2023, 55(2): 243-253. |
|