北京大学学报(医学版) ›› 2021, Vol. 53 ›› Issue (2): 348-354. doi: 10.19723/j.issn.1671-167X.2021.02.020

• 论著 • 上一篇    下一篇

熔融沉积成型3D打印盐酸维拉帕米胃漂浮制剂的制备与体外评价

陈迪1,徐翔宇2,汪明睿1,李芮1,臧根奥2,张悦1,钱浩楠1,闫光荣2,Δ(),范田园1,Δ()   

  1. 1.北京大学药学院药剂学系,北京大学药学院分子药剂学与新释药系统北京市重点实验室, 北京 100191
    2.北京航空航天大学机械工程及自动化学院, 北京 100191
  • 收稿日期:2019-05-05 出版日期:2021-04-18 发布日期:2021-04-21
  • 通讯作者: 闫光荣,范田园 E-mail:yangr@buaa.edu.cn;tianyuan_fan@bjmu.edu.cn

Preparation and in vitro evaluation of fused deposition modeling 3D printed verapa-mil hydrochloride gastric floating formulations

CHEN Di1,XU Xiang-yu2,WANG Ming-rui1,LI Rui1,ZANG Gen-ao2,ZHANG Yue1,QIAN Hao-nan1,YAN Guang-rong2,Δ(),FAN Tian-yuan1,Δ()   

  1. 1. Department of Pharmaceutics, Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, Peking University School of Pharmaceutical Sciences, Beijing 100191, China
    2. School of Mechanical Engineering and Automation, Beihang University, Beijing 100191, China
  • Received:2019-05-05 Online:2021-04-18 Published:2021-04-21
  • Contact: Guang-rong YAN,Tian-yuan FAN E-mail:yangr@buaa.edu.cn;tianyuan_fan@bjmu.edu.cn

摘要:

目的: 探究以熔融沉积成型(fused deposition modeling,FDM)3D打印技术研制胃漂浮制剂的可行性,并对所研制的FDM 3D打印胃漂浮制剂进行相关的体外质量评价。方法: 以盐酸维拉帕米为模型药物,聚乙烯醇(polyvinyl alcohol,PVA)为辅料,利用FDM 3D打印技术制备胶囊型和半球型的两种胃漂浮制剂,其填充率均为15%,层高均为0.2 mm,顶底厚均为0.8 mm,壳数分别为3和4。以扫描电镜观察制剂的形态,以称重法考察制剂的平均质量,采用物性测定仪测定制剂互相垂直的两个方向的硬度,高效液相色谱法测定制剂中的药物含量,并对制剂的体外漂浮和释药行为进行表征。结果: 所制备的FDM 3D打印胶囊型和半球型制剂均形态良好,无打印缺陷;胶囊型和半球型制剂的平均质量分别为(584±13) mg和(550±12) mg;胶囊型和半球型制剂的硬度均大于800.0 N;胶囊型和半球型制剂均实现了体外漂浮且无漂浮滞后时间,体外漂浮时间分别为(3.97±0.41) h和(4.48±0.21) h;胶囊型和半球型制剂在体外释药完全的时间均为3 h。结论: 采用FDM 3D打印技术成功制备了胶囊型和半球型的盐酸维拉帕米胃漂浮制剂。

关键词: 熔融沉积成型, 打印, 三维, 维拉帕米, 胃漂浮制剂

Abstract:

Objective: To explore the feasibility of preparing gastric floating formulations by fused de-position modeling (FDM) 3D printing technology, to evaluate the in vitro properties of the prepared FDM 3D printed gastric floating formulations, and to compare the influence of different external shapes of the formulation with their in vitro properties. Methods: Verapamil hydrochloride and polyvinyl alcohol (PVA) were used as the model drug and the excipient, respectively. The capsule-shaped and hemisphere-shaped gastric floating formulations were then prepared by FDM 3D printing. The infill percentages were 15%, the layer heights were 0.2 mm, and the roof or floor thicknesses were 0.8 mm for both the 3D printed formulations, while the number of shells was 3 and 4 for capsule-shaped and hemisphere-shaped formulation, respectively. Scanning electron microscopy (SEM) was used to observe the morpho-logy of the surface and cross section of the formulations. Gravimetric method was adopted to measure the weights of the formulations. Texture analyzer was employed to evaluate the hardness of the formulations. High performance liquid chromatography method was used to determine the drug contents of the formulations. The in vitro floating and drug release behavior of the formulations were also characterized. Results: SEM showed that the appearance of the FDM 3D printed gastric floating formulations were both intact and free from defects with the filling structure which was consistent with the design. The weight variations of the two formulations were relatively low, indicating a high reproducibility of the 3D printing fabrication. Above 800.0 N of hardness was obtained in two mutually perpendicular directions for the two formulations. The drug contents of the two formulations approached to 100%, showing no drug loss during the 3D printing process. The two formulations floated in vitro without any lag time, and the in vitro floating time of the capsule-shaped and hemisphere-shaped formulation were (3.97±0.41) h and (4.48±0.21) h, respectively. The in vitro release of the two formulations was significantly slower than that of the commercially available immediate-release tablets. Conclusion: The capsule-shaped and hemisphere-shaped verapamil hydrochloride gastric floating formulations were prepared by FDM 3D printing technology successfully. Only the floating time was found to be influenced by the external shape of the 3D printed formulations in this study.

Key words: Fused deposition modeling, Printing, three-dimensional, Verapamil, Gastric floating formulation

中图分类号: 

  • R944.9

图1

FDM 3D打印胃漂浮制剂的参数示意图"

图2

FDM 3D打印胃漂浮制剂的填充结构示意图"

表1

FDM 3D打印胃漂浮制剂的参数"

Formulations Size/mm Layer height/mm Floor or roof thickness/mm Number of shells Infill percentage/%
a b
Capsule 17.7 6.8 0.2 0.8 3 15
Hemisphere 11.4 7.8 0.2 0.8 4 15

图3

从制剂互相垂直的两个方向(方向Ⅰ和方向Ⅱ)测量硬度时的施力示意图"

图4

FDM 3D打印胃漂浮制剂的实物照片"

图5

FDM 3D打印胃漂浮制剂的扫描电镜照片"

表2

FDM 3D打印胃漂浮制剂的表征结果"

Formulations Weight/mg Hardness/N Lag time/s Floating time/h
Direction Ⅰ Direction Ⅱ
Capsule 584±13 >800.0 >800.0 0 3.97±0.41
Hemisphere 550±12 >800.0 >800.0 0 4.48±0.21

图6

市售片、胶囊型和半球型FDM 3D打印制剂的体外释药曲线"

[1] Kaushik AY, Tiwari AK, Gaur A. Role of excipients and polyme-ric advancements in preparation of floating drug delivery systems[J]. Int J Pharm Investig, 2015,5(1):1-12.
[2] Pawar VK, Kansal S, Garg G, et al. Gastroretentive dosage forms: A review with special emphasis on floating drug delivery systems[J]. Drug Deliv, 2011,18(2):97-110.
pmid: 20958237
[3] Kotreka UK, Adeyeye MC. Gastroretentive floating drug-delivery systems: A critical review[J]. Crit Rev Ther Drug Carrier Syst, 2011,28(1):47-99.
[4] Sauzet C, Claeys-Bruno M, Nicolas M, et al. An innovative floating gastro retentive dosage system: formulation and in vitro evaluation[J]. Int J Pharm, 2009,378(1/2):23-29.
[5] Sungthongjeen S, Paeratakul O, Limmatvapirat S, et al. Preparation and in vitro evaluation of a multiple-unit floating drug delivery system based on gas formation technique[J]. Int J Pharm, 2006,324(2):136-143.
[6] Alexander S, Juergen S, Roland B. Gastroretentive drug delivery systems[J]. Expert Opinion on Drug Delivery, 2006,3(2):217-233.
pmid: 16506949
[7] Konta AA, Garcia-Pina M, Serrano DR. Personalised 3D printed medicines: Which techniques and polymers are more successful?[J]. Bioengineering (Basel), 2017,4(4):79-96.
[8] Long J, Gholizadeh H, Lu J, et al. Application of fused deposition modelling (FDM) method of 3D printing in drug delivery[J]. Curr Pharm Des, 2017,23(3):433-439.
[9] Palo M, Hollander J, Suominen J, et al. 3D printed drug delivery devices: Perspectives and technical challenges[J]. Expert Rev Med Devices, 2017,14(9):685-696.
[10] Alhnan MA, Okwuosa TC, Sadia M, et al. Emergence of 3D printed dosage forms: Opportunities and challenges[J]. Pharm Res, 2016,33(8):1817-1832.
pmid: 27194002
[11] Sawicki W, Glod J. Preparation of floating pellets with verapamil hydrochloride[J]. Acta Pol Pharm, 2004,61(3):185-190.
[12] Patel A, Modasiya M, Shah D, et al. Development and in vivo floating behavior of verapamil HCl intragastric floating tablets[J]. AAPS PharmSciTech, 2009,10(1):310-315.
[13] 范田园, 张悦. 一种3D打印胃漂浮制剂及其制备方法: 中国,CN106692091A[P]. 2017-05-24.
[14] Srikanth MV, Rao NS, Sunil SA, et al. Statistical design and evaluation of a propranolol HCl gastric floating tablet[J]. Acta Pharmaceutica Sinica B, 2012,2(1):60-69.
[15] Fu J, Yin H, Yu X, et al. Combination of 3D printing technologies and compressed tablets for preparation of riboflavin floating tablet-in-device (TiD) systems[J]. Int J Pharm, 2018,549(1/2):370-379.
[16] Goyanes A, Buanz AB, Hatton GB, et al. 3D printing of modified-release aminosalicylate (4-ASA and 5-ASA) tablets[J]. Eur J Pharm Biopharm, 2015,89:157-162.
pmid: 25497178
[17] Fuenmayor E, Forde M, Healy AV, et al. Comparison of fused-filament fabrication to direct compression and injection molding in the manufacture of oral tablets[J]. Int J Pharm, 2019,558:328-340.
pmid: 30659922
[18] Yang Y, Wang H, Li H, et al. 3D printed tablets with internal scaffold structure using ethyl cellulose to achieve sustained ibuprofen release[J]. Eur J Pharm Sci, 2018,115:11-18.
[19] Tagami T, Nagata N, Hayashi N, et al. Defined drug release from 3D-printed composite tablets consisting of drug-loaded polyvinylalcohol and a water-soluble or water-insoluble polymer filler[J]. Int J Pharm, 2018,543(1/2):361-367.
[20] Solanki NG, Tahsin M, Shah AV, et al. Formulation of 3D printed tablet for rapid drug release by fused deposition modeling: Screening polymers for drug release, drug-polymer miscibility and printability[J]. J Pharm Sci, 2018,107(1):390-401.
[21] Arafat B, Wojsz M, Isreb A, et al. Tablet fragmentation without a disintegrant: A novel design approach for accelerating disintegration and drug release from 3D printed cellulosic tablets[J]. Eur J Pharm Sci, 2018,118:191-199.
pmid: 29559404
[22] Kadry H, Al-Hilal TA, Keshavarz A, et al. Multi-purposable filaments of HPMC for 3D printing of medications with tailored drug release and timed-absorption[J]. Int J Pharm, 2018,544(1):285-296.
doi: 10.1016/j.ijpharm.2018.04.010 pmid: 29680281
[23] Sadia M, Arafat B, Ahmed W, et al. Channelled tablets: An innovative approach to accelerating drug release from 3D printed tablets[J]. J Control Release, 2018,269:355-363.
pmid: 29146240
[24] Tagami T, Fukushige K, Ogawa E, et al. 3D Printing factors important for the fabrication of polyvinylalcohol filament-based tablets[J]. Biol Pharm Bull, 2017,40(3):357-364.
[25] Goyanes A, Robles Martinez P, Buanz A, et al. Effect of geometry on drug release from 3D printed tablets[J]. Int J Pharm, 2015,494(2):657-663.
pmid: 25934428
[26] Zhang J, Yang W, Vo AQ, et al. Hydroxypropyl methylcellulose-based controlled release dosage by melt extrusion and 3D printing: Structure and drug release correlation[J]. Carbohydr Polym, 2017,177:49-57.
pmid: 28962795
[27] Goyanes A, Wang J, Buanz A, et al. 3D printing of medicines: Engineering novel oral devices with unique design and drug delease characteristics[J]. Mol Pharm, 2015,12(11):4077-4084.
pmid: 26473653
[28] Lunio R, Sawicki W. Influence of the components of Kollicoat SR film on mechanical properties of floating pellets from the point of view of tableting[J]. Pharmazie, 2008,63(10):731-735.
pmid: 18972835
[29] Yoshida MI, Gomes EC, Soares CD, et al. Thermal analysis applied to verapamil hydrochloride characterization in pharmaceutical formulations[J]. Molecules, 2010,15(4):2439-2452.
pmid: 20428054
[30] Soppimath KS, Kulkarni AR, Aminabhavi TM. Development of hollow microspheres as floating controlled-release systems for car-diovascular drugs: Preparation and release characteristics[J]. Drug Dev Ind Pharm, 2001,27(6):507-515.
pmid: 11548857
[31] Durig T, Fassihi R. Evaluation of floating and sticking extended release delivery systems: An unconventional dissolution test[J]. J Control Release, 2000,67(1):37-44.
pmid: 10773327
[32] Sawicki W, Lunio R, Walentynowicz O, et al. Influence of the type of cellulose on properties of multi-unit target releasing in sto-mach dosage form with verapamil hydrochloride[J]. Acta Pol Pharm, 2007,64(1):81-88.
pmid: 17665855
[1] 刘思民,赵一姣,王晓燕,王祖华. 动态导航下不同深度环钻定位精确度的体外评价[J]. 北京大学学报(医学版), 2022, 54(1): 146-152.
[2] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[3] 孙玉春,郭雨晴,陈虎,邓珂慧,李伟伟. 口腔精准仿生修复技术的自主创新研发与转化[J]. 北京大学学报(医学版), 2022, 54(1): 7-12.
[4] 杨刚,胡文杰,曹洁,柳登高. 牙周健康的上颌前牙唇侧嵴顶上牙龈的三维形态分析[J]. 北京大学学报(医学版), 2021, 53(5): 990-994.
[5] 邵振兴,宋庆法,赵宇晴,崔国庆. 一种结合线袢固定的关节镜下“嵌入式”喙突移位术:手术技术及术后影像学分析[J]. 北京大学学报(医学版), 2021, 53(5): 896-901.
[6] 李新飞, 彭意吉, 余霄腾, 熊盛炜, 程嗣达, 丁光璞, 杨昆霖, 唐琦, 米悦, 吴静云, 张鹏, 谢家馨, 郝瀚, 王鹤, 邱建星, 杨建, 李学松, 周利群. 肾部分切除术前CT三维可视化评估标准的初步探究[J]. 北京大学学报(医学版), 2021, 53(3): 613-622.
[7] 黄新瑞,李莎,高嵩. 冷冻电镜成像中噪声的滤波方法进展[J]. 北京大学学报(医学版), 2021, 53(2): 425-433.
[8] 穆海丽,田福聪,王晓燕,高学军. 玻璃体和通用型复合树脂耐磨性的临床对照研究[J]. 北京大学学报(医学版), 2021, 53(1): 120-125.
[9] 岳兆国,张海东,杨静文,侯建霞. 数字化评估CAD/CAM个性化基台与成品基台影响粘接剂残留的体外研究[J]. 北京大学学报(医学版), 2021, 53(1): 69-75.
[10] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[11] 国丹妮,潘韶霞,衡墨笛,屈健,魏秀霞,周永胜. 应用于无牙颌种植修复设计的三维面部扫描配准方法的对比[J]. 北京大学学报(医学版), 2021, 53(1): 83-87.
[12] 李思雨,段雪飞,曹烨. 应用超声器械改善预备体肩台的效果[J]. 北京大学学报(医学版), 2021, 53(1): 88-94.
[13] 邱天成,刘筱菁,薛竹林,李自力. 基于三维动态照相机的正常人面部表情可重复性研究[J]. 北京大学学报(医学版), 2020, 52(6): 1107-1111.
[14] 徐迪,魏冬豪,张亚池,邸萍,林野. 以苄索氯胺和异丙醇为主要有效成分的消毒剂对牙科印模精度的影响[J]. 北京大学学报(医学版), 2020, 52(6): 1112-1116.
[15] 唐祖南,Hui Yuh Soh,胡耒豪,于尧,章文博,彭歆. 混合现实技术在口腔颌面部肿瘤手术中的应用[J]. 北京大学学报(医学版), 2020, 52(6): 1124-1129.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 田增民, 陈涛, Nanbert ZHONG, 李志超, 尹丰, 刘爽. 神经干细胞移植治疗遗传性小脑萎缩的临床研究(英文稿)[J]. 北京大学学报(医学版), 2009, 41(4): 456 -458 .
[2] 郭岩, 谢铮. 用一代人时间弥合差距——健康社会决定因素理论及其国际经验[J]. 北京大学学报(医学版), 2009, 41(2): 125 -128 .
[3] 成刚, 钱振华, 胡军. 艾滋病项目自愿咨询检测的技术效率分析[J]. 北京大学学报(医学版), 2009, 41(2): 135 -140 .
[4] 卢恬, 朱晓辉, 柳世庆, 郑杰, 邱晓彦. 白细胞介素2促进宫颈癌细胞系HeLaS3免疫球蛋白G的表达[J]. 北京大学学报(医学版), 2009, 41(2): 158 -161 .
[5] 袁惠燕, 张苑, 范田园. 离子交换型栓塞微球及其载平阳霉素的制备与性质研究[J]. 北京大学学报(医学版), 2009, 41(2): 217 -220 .
[6] 徐莉, 孟焕新, 张立, 陈智滨, 冯向辉, 释栋. 侵袭性牙周炎患者血清中抗牙龈卟啉单胞菌的IgG抗体水平的研究[J]. 北京大学学报(医学版), 2009, 41(1): 52 -55 .
[7] 董稳, 刘瑞昌, 刘克英, 关明, 杨旭东. 氯诺昔康和舒芬太尼用于颌面外科术后自控静脉镇痛的比较[J]. 北京大学学报(医学版), 2009, 41(1): 109 -111 .
[8] 祁琨, 邓芙蓉, 郭新彪. 纳米二氧化钛颗粒对人肺成纤维细胞缝隙连接通讯的影响[J]. 北京大学学报(医学版), 2009, 41(3): 297 -301 .
[9] 李宏亮*, 安卫红*, 赵扬玉, 朱曦. 妊娠合并高脂血症性胰腺炎行血液净化治疗1例[J]. 北京大学学报(医学版), 2009, 41(5): 599 -601 .
[10] 李伟军, 邢晓芳, 曲立科, 孟麟, 寿成超. PRL-3基因C104S位点突变体和CAAX缺失体的构建及表达[J]. 北京大学学报(医学版), 2009, 41(5): 516 -520 .