北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (1): 38-43. doi: 10.19723/j.issn.1671-167X.2023.01.006

• 论著 • 上一篇    下一篇

低温等离子体对牙本质小管内粪肠球菌的抗菌效果

仲若情1,朱梦倩1,李应龙2,*(),潘洁1,*()   

  1. 1. 北京大学口腔医学院·口腔医院综合科, 国家口腔医学中心, 国家口腔疾病临床医学研究中心, 口腔生物材料和数字诊疗装备国家工程研究中心, 口腔数字医学北京市重点实验室, 北京 100081
    2. 首都医科大学附属北京朝阳医院口腔科, 北京 100020
  • 收稿日期:2022-10-10 出版日期:2023-02-18 发布日期:2023-01-31
  • 通讯作者: 李应龙,潘洁 E-mail:liyinglongpku@163.com;panjie72@sina.com
  • 基金资助:
    国家自然科学基金(81901064);北京市医管局青苗项目(QML20210304)

Antibacterial effect of low-temperature plasma on Enterococcus faecalis in dentinal tubules in vitro

Ruo-qing ZHONG1,Meng-qian ZHU1,Ying-long LI2,*(),Jie PAN1,*()   

  1. 1. Department of General Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
    2. Department of Stomatology, Beijing Chaoyang Hospital, Capital Medical University, Beijing 100020, China
  • Received:2022-10-10 Online:2023-02-18 Published:2023-01-31
  • Contact: Ying-long LI,Jie PAN E-mail:liyinglongpku@163.com;panjie72@sina.com
  • Supported by:
    the National Natural Science Foundation of China(81901064);Beijing Hospitals Authority Youth Program(QML20210304)

RICH HTML

9   

摘要:

目的: 用梯度离心法构建粪肠球菌牙本质小管感染模型, 评价新型低温等离子体设备对牙本质小管内粪肠球菌的抗菌效果。方法: 选用无龋坏单根管离体牙制备4 mm×4 mm×2 mm标准牙本质块, 置于粪肠球菌菌液中, 梯度离心后培养24 h, 用于构建牙本质小管粪肠球菌感染模型, 将20个粪肠球菌牙本质小管感染样本随机平均分为5组: 低温等离子体射流处理0、5、10 min组, 氢氧化钙糊剂封药7 d组, 2%(质量分数)氯己定凝胶封药7 d组。用扫描电镜和激光共聚焦显微镜评估牙本质小管内感染情况, 并评价低温等离子体的抗菌效果。结果: 扫描电镜和激光共聚焦显微镜结果表明, 利用梯度离心法, 培养24 h后, 粪肠球菌可以充分进入牙本质小管, 深度超过600μm, 能够成功构建粪肠球菌感染牙本质小管模型; 低温等离子体能够进入牙本质小管中发挥作用, 经过10 min的低温等离子体处理, 牙本质小管内绝大多数粪肠球菌被杀灭, 效果超过氢氧化钙糊剂封药7 d以及2%氯己定凝胶封药7 d。结论: 梯度离心法能够有效建立粪肠球菌牙本质小管感染模型, 低温等离子体能够在10 min内有效杀灭牙本质小管中的粪肠球菌, 优于氢氧化钙糊剂封药7 d和2%氯己定凝胶封药7 d。

关键词: 低温等离子体, 梯度离心, 粪肠球菌, 牙本质小管

Abstract:

Objective: To construct a model of Enterococcus faecalis (E. faecalis) infection in dentinal tubules by gradient centrifugation and to evaluate the antibacterial effect of low-temperature plasma on E. faecalis in dentinal tubules. Methods: Standard dentin blocks of 4 mm×4 mm×2 mm size were prepared from single root canal isolated teeth without caries, placed in the E. faecalis bacterial solution, centrifuged in gradient and incubated for 24 h to establish the model of dentinal tubule infection with E. faecalis. The twenty dentin blocks of were divided into five groups, low-temperature plasma jet treatment for 0, 5 and 10 min, calcium hydroxide paste sealing for 7 d and 2% chlorhexidine gel sealing for 7 d. Scanning electron microscopy and confocal laser scanning microscope were used to assess the infection in the dentinal tubules and the antibacterial effect of low-temperature plasma. Results: The results of scanning electron microscopy and confocal laser scanning microscopy showed that after 24 h of incubation by gradient centrifugation, E. faecalis could fully enter the dentinal tubules to a depth of more than 600μm indicating that this method was time-saving and efficient and could successfully construct a model of E. faecalis infection in dentinal tubules. Low-temperature plasma could enter the dentinal tubules and play a role, the structure of E. faecalis was still intact after 5 min of low-temperature plasma treatment, with no obvious damage, and after 10 min of low-temperature plasma treatment, the surface morphology of E. faecalis was crumpled and deformed, the cell wall was seriously collapsed, and the normal physiological morphology was damaged indicating that the majority of E. faecalis was killed in the dentinal tubules. The antibacterial effect of low-temperature plasma treatment for 10 min exceeded that of the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d. These two chemicals had difficulty entering deep into the dentinal tubules, and therefore only had a few of antibacterial effect on the bacterial biofilm on the root canal wall, and there was also no significant damage to the E. faecalis bacterial structure. Conclusion: Gradient centrifugation could establish the model of E. faecalis dentin infection successfully. Low-temperature plasma treatment for 10 min could kill E. faecalis in dentinal tubules effectively, which is superior to the calcium hydroxide paste sealing for 7 d and the 2% chlorhexidine gel sealing for 7 d.

Key words: Low-temperature plasma, Gradient centrifugation, Enterococcus faecalis, Dentinal tubules

中图分类号: 

  • R781.3

图1

低温等离子体射流发生装置及示意图"

图2

牙本质小管感染粪肠球菌情况"

图3

对照组和实验组扫描电镜结果"

图4

对照组和实验组激光共聚焦显微镜结果,图像左侧为根管壁侧,右侧为牙骨质侧"

1 Friedman S , Mor C . The success of endodontic therapy: Healing and functionality[J]. J Calif Dent Assoc, 2004, 32 (6): 493- 503.
2 Baras BH , Melo MAS , Sun J , et al. Novel endodontic sealer with dual strategies of dimethylaminohexadecyl methacrylate and nano-particles of silver to inhibit root canal biofilms[J]. Dent Mater, 2019, 35 (8): 1117- 1129.
doi: 10.1016/j.dental.2019.05.014
3 Stuart CH , Schwartz SA , Beeson TJ , et al. Enterococcus faecalis: Its role in root canal treatment failure and current concepts in retreatment[J]. J Endod, 2006, 32 (2): 93- 98.
doi: 10.1016/j.joen.2005.10.049
4 Sundqvist G , Figdor D , Persson S , et al. Microbiologic analysis of teeth with failed endodontic treatment and the outcome of conservative re-treatment[J]. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1998, 85 (1): 86- 93.
doi: 10.1016/S1079-2104(98)90404-8
5 Chen ZT , Chen GJ , Obenchain R , et al. Cold atmospheric plasma delivery for biomedical applications[J]. Mater Today, 2022, 54, 153- 188.
doi: 10.1016/j.mattod.2022.03.001
6 Moreau M , Orange N , Feuilloley MG . Non-thermal plasma technologies: New tools for bio-decontamination[J]. Biotechnol Adv, 2008, 26 (6): 610- 617.
doi: 10.1016/j.biotechadv.2008.08.001
7 Chen K , Xu DG , Li JN , et al. Application of terahertz time-domain spectroscopy in atmospheric pressure plasma jet diagnosis[J]. Results Phys, 2020, 16, 102928.
doi: 10.1016/j.rinp.2020.102928
8 Tornin J , Labay C , Tampieri F , et al. Evaluation of the effects of cold atmospheric plasma and plasma-treated liquids in cancer cell cultures[J]. Nat Protoc, 2021, 16 (6): 2826- 2850.
doi: 10.1038/s41596-021-00521-5
9 Kumar-Dubey S , Dabholkar N , Narayan-Pal U , et al. Emerging innovations in cold plasma therapy against cancer: A paradigm shift[J]. Drug Discov Today, 2022, 27 (9): 2425- 2439.
doi: 10.1016/j.drudis.2022.05.014
10 Zhang H , Xu SD , Zhang JS , et al. Plasma-activated thermosensitive biogel as an exogenous ROS carrier for post-surgical treatment of cancer[J]. Biomaterials, 2021, 276, 121057.
doi: 10.1016/j.biomaterials.2021.121057
11 Kim GC , Kim GJ , Park SR , et al. Air plasma coupled with antibody-conjugated nanoparticles: A new weapon against cancer[J]. J Phys D Appl Phys, 2008, 42 (3): 032005.
12 Lu XP , Ye T , Cao YG , et al. The roles of the various plasma agents in the inactivation of bacteria[J]. J Appl Phys, 2008, 104 (5): 053309.
doi: 10.1063/1.2977674
13 Simon HU , Haj-Yehia A , Levi-Schaffer F . Role of reactive oxygen species (ROS) in apoptosis induction[J]. Apoptosis, 2000, 5 (5): 415- 418.
doi: 10.1023/A:1009616228304
14 Laroussi M . Low temperature plasma-based sterilization: Overview and state-of-the-art[J]. Plasma Process Polym, 2005, 2 (5): 391- 400.
doi: 10.1002/ppap.200400078
15 Pan J , Sun K , Liang YD , et al. Cold plasma therapy of a tooth root canal infected with Enterococcus faecalis biofilms in vitro[J]. J Endod, 2013, 39 (1): 105- 110.
doi: 10.1016/j.joen.2012.08.017
16 Li YL , Sun K , Ye GP , et al. Evaluation of cold plasma treatment and safety in disinfecting 3-week root canal Enterococcus faecalis biofilm in vitro[J]. J Endod, 2015, 41 (8): 1325- 1330.
doi: 10.1016/j.joen.2014.10.020
17 Ma JZ , Wang ZJ , Shen Y , et al. A new noninvasive model to study the effectiveness of dentin disinfection by using confocal laser scanning microscopy[J]. J Endod, 2011, 37 (10): 1380- 1385.
doi: 10.1016/j.joen.2011.06.018
18 Du TF , Wang ZJ , Shen Y , et al. Effect of long-term exposure to endodontic disinfecting solutions on young and old Enterococcus faecalis biofilms in dentin canals[J]. J Endod, 2014, 40 (4): 509- 514.
19 高岩, 李铁军. 口腔组织学与病理学[M]. 2版 北京: 北京大学医学出版社, 2013: 74.
20 王雅丽, 罗丹, 申婷, 等. 不同冲洗方法对粪肠球菌感染根管的抗菌性研究[J]. 中华口腔医学研究杂志(电子版), 2019, 13 (4): 204- 211.
21 Li YL , Pan J , Wu D , et al. Regulation of Enterococcus faecalis biofilm formation and quorum sensing related virulence factors with ultra-low dose reactive species produced by plasma activated water[J]. Plasma Chem Plasma P, 2019, 39, 35- 49.
22 Liang YD , Li YL , Sun K , et al. Plasma thorns: Atmospheric pressure non-thermal plasma source for dentistry applications[J]. Plasma Process Polym, 2015, 12 (10): 1069- 1075.
23 Asnaashari M , Ashraf H , Rahmati A , et al. A comparison between effect of photodynamic therapy by LED and calcium hydro-xide therapy for root canal disinfection against Enterococcus faecalis: A randomized controlled trial[J]. Photodiagnosis Photodyn Ther, 2017, 17, 226- 232.
24 Afkhami F , Rostami G , Batebi S , et al. Residual antibacterial effects of a mixture of silver nanoparticles/calcium hydroxide and other root canal medicaments against Enterococcus faecalis[J]. J Dent Sci, 2022, 17 (3): 1260- 1265.
25 Gomes BP , Souza SF , Ferraz CC , et al. Effectiveness of 2% chlorhexidine gel and calcium hydroxide against Enterococcus faecalis in bovine root dentine in vitro[J]. Int Endod J, 2003, 36 (4): 267- 275.
26 Kapralos V , Sunde PT , Camilleri J , et al. Effect of chlorhexidine digluconate on antimicrobial activity, cell viability and physicochemical properties of three endodontic sealers[J]. Dent Mater, 2022, 38 (6): 1044- 1059.
[1] 赵晓一,刘畅,钱锟,潘洁. 成熟恒牙牙髓切断术的疗效及影像学评价[J]. 北京大学学报(医学版), 2024, 56(1): 138-143.
[2] 何佩瑶,包旭东. 常温流动牙胶封闭剂GuttaFlow2单尖充填弯曲根管的封闭效果[J]. 北京大学学报(医学版), 2024, 56(1): 99-105.
[3] 叶雨阳,岳林,邹晓英,王晓燕. 成牙本质方向分化牙髓干细胞外泌体形态及微小RNA表达谱特征[J]. 北京大学学报(医学版), 2023, 55(4): 689-696.
[4] 叶佳学,梁宇红. 牙髓专科医师应用锥形束CT的现况调查[J]. 北京大学学报(医学版), 2023, 55(1): 114-119.
[5] 钱锟,潘洁,朱文昊,赵晓一,刘畅,雍颹. 两种硅酸钙类材料用于成熟恒牙牙髓切断术的临床效果[J]. 北京大学学报(医学版), 2022, 54(1): 113-118.
[6] 王铮,丁茜,高远,马全诠,张磊,葛兮源,孙玉春,谢秋菲. 氧化锆多孔表面显微形貌对成骨细胞增殖及分化的影响[J]. 北京大学学报(医学版), 2022, 54(1): 31-39.
[7] 孟圆,张丽琪,赵雅宁,柳登高,张祖燕,高岩. 67例上颌根尖周囊肿的三维影像特点分析[J]. 北京大学学报(医学版), 2021, 53(2): 396-401.
[8] 李菲,乔静,段晋瑜,张勇,王秀婧. 引导性组织再生术对浓缩生长因子联合植骨术治疗下颌磨牙Ⅱ度根分叉病变临床效果的影响[J]. 北京大学学报(医学版), 2020, 52(2): 346-352.
[9] 李婧宜,王赛楠,董艳梅. 非甾体类抗炎药对人牙髓细胞的抗炎修复作用[J]. 北京大学学报(医学版), 2020, 52(1): 24-29.
[10] 陈颖怡,胡紫琪,惠甜倩,刘鹤. Zeste同源蛋白2增强子通过调节巨噬细胞趋化影响牙髓炎症反应[J]. 北京大学学报(医学版), 2020, 52(1): 18-23.
[11] 王佳莎,王培育,梁宇红. 利用近场微波系统检测不同方法干燥根管的效果[J]. 北京大学学报(医学版), 2019, 51(6): 1124-1129.
[12] 张倩莉,袁重阳,刘力,温世鹏,王晓燕. 胶原静电纺纳米纤维膜对人牙髓细胞生物学行为的影响[J]. 北京大学学报(医学版), 2019, 51(1): 28-34.
[13] 雷玥,杨颖婷,战园. 生物陶瓷材料在乳牙牙髓切断术中的应用[J]. 北京大学学报(医学版), 2019, 51(1): 70-74.
[14] 龙赟子,刘思毅,李稳,董艳梅. 生物活性玻璃盖髓剂的理化性质[J]. 北京大学学报(医学版), 2018, 50(5): 887-891.
[15] 李爽,张清. 玷污层对新型三氧化矿物凝聚体根尖封闭性的影响[J]. 北京大学学报(医学版), 2018, 50(3): 560-563.
Viewed
Full text
181
HTML PDF
Just accepted Online first Issue Just accepted Online first Issue
0 0 9 0 0 172

  From Others local
  Times 16 165
  Rate 9% 91%

Abstract
456
Just accepted Online first Issue
0 0 456
  From Others local
  Times 442 14
  Rate 97% 3%

Cited

Web of Science  Crossref   ScienceDirect  Search for Citations in Google Scholar >>
 
This page requires you have already subscribed to WoS.
  Shared   
  Discussed   
No Suggested Reading articles found!