北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (3): 465-472. doi: 10.19723/j.issn.1671-167X.2025.03.009

• 论著 • 上一篇    下一篇

基于移动健康技术对超重或肥胖孕妇体重管理的随机对照试验

李萍1, 王海雪1, 高晓2, 韩亚静2, 王辉1, 王海俊1,*(), 牟莹莹2,*()   

  1. 1. 北京大学公共卫生学院妇幼卫生学系/北京大学医学部-潍坊市妇幼健康联合研究中心/国家卫生健康委员会生育健康重点实验室, 北京 100191
    2. 潍坊市妇幼保健院, 山东潍坊 261011
  • 收稿日期:2025-02-08 出版日期:2025-06-18 发布日期:2025-06-13
  • 通讯作者: 王海俊, 牟莹莹
  • 基金资助:
    北京大学医学部-潍坊市妇幼健康联合研究中心(PKUWF-Y09)

A randomized controlled trial of weight management based on mobile health techno-logy among overweight or obese pregnant women

Ping LI1, Haixue WANG1, Xiao GAO2, Yajing HAN2, Hui WANG1, Haijun WANG1,*(), Yingying MU2,*()   

  1. 1. Department of Maternal and Child Health, Peking University School of Public Health / Peking University Health Science Center-Weifang Joint Research Center for Maternal and Child Health / National Health Commission Key Laboratory of Reproductive Health, Beijing 100191, China
    2. Weifang Maternal and Child Health Center, Weifang 261011, Shandong, China
  • Received:2025-02-08 Online:2025-06-18 Published:2025-06-13
  • Contact: Haijun WANG, Yingying MU
  • Supported by:
    Peking University Health Science Center-Weifang Maternal and Child Health Joint Research Center(PKUWF-Y09)

RICH HTML

  

摘要:

目的: 评估基于移动健康技术的生活方式干预对超重或肥胖妇女的孕期体重管理的有效性,探索干预效果的影响因素,为超重或肥胖妇女的孕期体重管理提供科学依据。方法: 采用随机对照试验设计,于2024年4—8月招募200名18~40岁的孕前超重或肥胖的孕早期单胎孕妇,根据体重指数(body mass index,BMI)分类、年龄、产次进行分层区组随机化。对照组接受常规诊疗和保健,干预组接受基于移动健康技术的生活方式干预,包括每2周1次面对面或电话随访;指导孕妇在微信公众号记录每周饮食行为目标实现情况并提供个性化反馈;每天走6 000步,每周健步走150 min;每周记录1次体重并进行个性化反馈。基于意向性分析原则,利用广义线性混合模型分析干预对孕24~28周前增重及增重速率、妊娠糖尿病和饮食运动行为的影响。采用亚组分析和交互作用分析,探索孕24~28周前增重干预效果是否受孕妇不同特征影响。结果: 干预组和对照组孕妇的平均年龄分别为(30.49±3.99)岁、(29.83±3.95)岁,入组孕周分别为(11.35±1.61)周、(11.26±1.52)周,两组基线特征差异均无统计学意义(P均>0.05)。干预组和对照组分别失访10人和12人,共计178名孕妇完成中期随访。孕24~28周中期随访时,干预组和对照组分别增重(5.00±3.72) kg和(6.57±4.28) kg,调整年龄、孕次、产次、地区、孕前BMI分类、社会经济状况等协变量后,孕24~28周前增重的组间差异为-1.63 kg(95%CI:-2.80~-0.46;P=0.007),增重速率的组间差异为-0.07 kg/周(95%CI:-0.11~-0.02;P=0.005)。与对照组相比,干预组口服葡萄糖耐量试验(oral glucose tolerance test,OGTT)空腹血糖降低0.19 mmol/L(95%CI:0.04~0.33;P=0.013)。两组妊娠糖尿病发生率差异无统计学意义。在年龄、地区、社会经济水平、产次等因素的不同亚组中,孕期体重干预效果差异无统计学意义。结论: 基于移动健康技术的生活方式干预能有效控制超重或肥胖妇女的孕24~28周前增重,并改善空腹血糖。

关键词: 孕期体重增长, 超重, 肥胖, 随机对照试验, 移动健康

Abstract:

Objective: To evaluate the effect of lifestyle interventions based on mobile health technology on gestational weight gain among overweight or obese pregnant women, to explore the influencing factors of the intervention effect, and to provide scientific evidence for weight management during pregnancy. Methods: The randomized controlled trial (RCT) design was used. From April 2024 to August 2024, 200 singleton overweight or obese pregnant women aged 18-40 years in early pregnancy were recruited and stratified block-randomized according to body mass index (BMI) categories, age, and parity. The control group received routine prenatal care, while the intervention group received lifestyle interventions based on mobile health technology, which included biweekly face-to-face or telephone sessions; weekly recording of dietary behavior goals with personalized feedback on WeChat public account; 6 000 steps per day and 150 minutes of brisk walking per week; and weekly weight recording with personalized feedback. Based on the intention-to-treat principle, generalized linear mixed models were used to analyze the effects on weight gain and weight gain rate up to 24-28 gestational weeks, gestational diabetes mellitus (GDM), and dietary and physical activity behaviors. Additionally, subgroup analysis and interaction analysis were conducted to explore whether intervention effects on weight gain varied by different maternal characteristics. Results: The mean age of the women in the intervention and control groups was (30.49± 3.99) years and (29.83±3.95) years, respectively, with gestational weeks at enrollment being (11.35±1.61) weeks and (11.26±1.52) weeks. No statistically significant differences were observed in the baseline characteristics between the two groups (P>0.05). In the study, 10 and 12 participants were lost to the follow-up in the intervention and control groups, respectively, with 178 women completing the midterm follow-up. At the midterm follow-up (24-28 weeks), the weight gain in the intervention and control groups was (5.00±3.72) kg and (6.57±4.28) kg, respectively. After adjusting for age, parity, gravidity, region, pre-pregnancy BMI categories, and socioeconomic status, the between-group difference was -1.63 kg (95%CI: -2.80 to -0.46; P=0.007). The adjusted between-group difference in weight gain rate was -0.07 kg/week (95%CI: -0.11 to -0.02; P=0.005). Compared with the control group, the intervention group had lower fasting blood glucose at the oral glucose tolerance test (OGTT) by 0.19 mmol/L (95%CI: 0.04 to 0.33; P=0.013). No significant difference was observed in GDM incidence between the two groups. Among different subgroups based on characteristics, such as age, region, socioeconomic status, and parity, there was no statistically significant dif-ference in the effect on weight gain. Conclusion: The lifestyle interventions based on mobile health technology effectively controlled weight gain up to 24-28 gestational weeks among overweight or obese women and improved fasting blood glucose level. This has significant public health implications for improving the health of overweight or obese pregnant women in China.

Key words: Gestational weight gain, Overweight, Obesity, Randomized controlled trial, Mobile health

中图分类号: 

  • R715.3

表1

研究对象基线特征"

Variable All (n=200) Control group (n=100) Intervention group (n=100) P value
Age/years 30.16±3.97 29.83±3.95 30.49±3.99 0.244
Gestational age/weeks 11.31±1.56 11.26±1.52 11.35±1.61 0.504
Pre-pregnancy BMI/(kg/m2) 27.88±3.25 27.68±3.03 28.08±3.45 0.596
Overweight 122 (61.0%) 61 (61.0%) 61 (61.0%) >0.999
Associate degree or above 169 (84.5%) 86 (86.0%) 83 (83.0%) 0.558
Employed 152 (76.0%) 75 (75.0%) 77 (77.0%) 0.741
Green score 64.89±8.63 64.83±8.53 64.95±8.76 0.824
Gravidity 0.752
  1 93 (46.5%) 49 (49.0%) 44 (44.0%)
  2 70 (35.0%) 34 (34.0%) 36 (36.0%)
  ≥3 37 (18.5%) 17 (17.0%) 20 (20.0%)
Primiparous 133 (66.5%) 69 (69.0%) 64 (64.0%) 0.454
Natural conception 188 (95.4%) 95 (96.0%) 93 (94.9%) 0.747
PCOS history 25 (12.5%) 10 (10.0%) 15 (15.0%) 0.285
Diabetes family history 46 (23.0%) 24 (24.0%) 22 (22.0%) 0.737
GDM history 3 (1.5%) 2 (2.0%) 1 (1.0%) >0.999
Nausea 126 (63.0%) 63 (63.0%) 63 (63.0%) >0.999
MET-min/week 622.12±716.18 645.17±840.43 599.07±568.87 0.167
Daily steps 3 882±2 685 3 680±2 277 4 081±3 030 0.486
Energy intake/(kcal/d) 1 935±585 1 887±574 1 982±595 0.203
Protein intake/(g/d) 74.53±24.41 73.00±24.42 76.05±24.43 0.282
Carbohydrate intake/(g/d) 303.63±100.55 297.07±98.06 310.19±103.05 0.323
Fat intake/(g/d) 48.48±19.23 46.73±19.74 50.24±18.63 0.143
DBI_P 14.88±8.83 14.12±8.65 15.64±8.98 0.214

表2

干预组和对照组增重情况"

Variables Intervention group (n=90) Control group (n=88) MD/RR (95%CI) P value
GWG/kg 5.00±3.72 6.57±4.28 -1.63 (-2.80, -0.46) 0.007
GWG rate/(kg/week) 0.19±0.14 0.25±0.17 -0.07 (-0.11, -0.02) 0.005
T1-T2 GWG/kg 4.53±2.79 5.80±3.94 -1.33 (-2.33, -0.33) 0.010
T1-T2 GWG rate/(kg/week) 0.31±0.19 0.40±0.27 -0.09 (-0.16, -0.03) 0.008
28-week GWG/kg 5.57±3.78 7.83±4.40 -2.23 (-3.40, -1.06) < 0.001
EGWG 41 (46.1%) 50 (58.8%) 0.51 (0.27, 0.96) 0.036
IGWG 25 (28.1%) 16 (18.8%) 1.94 (0.91, 4.09) 0.084
AGWG 23 (25.8%) 19 (22.4%) 1.32 (0.66, 2.63) 0.439

表3

干预组和对照组的饮食运动情况"

Variables Intervention group (n=90) Control group (n=88) MD (95%CI) P value
Baseline Midterm Baseline Midterm
MET-min/week 599.1±568.9 1 070.8±831.0 645.2±840.4 681.6±551.6 412.70 (211.27, 614.13) < 0.001
Daily steps 4 081±3 030 5 213±2 382 3 680±2 277 3 795±2 386 1 189 (547, 1 830) < 0.001
Energy intake/(kcal/d) 1 982±595 1 804±537 1 887±574 2 032±736 -250.2 (-441.9, -58.5) 0.011
Protein intake/(g/d) 76.05±24.43 77.83±21.75 73.00±24.42 82.65±28.15 -6.03 (-13.41, 1.34) 0.111
Carbohydrate intake/(g/d) 310.2±103.0 265.6±103.6 297.1±98.1 306.0±124.1 -43.41 (-77.42, -9.39) 0.013
Fat intake/(g/d) 50.24±18.63 51.19±14.50 46.73±19.74 55.69±23.28 -5.26 (-10.99, 0.48) 0.074
DBI_P 15.64±8.98 13.60±9.17 14.12±8.65 15.33±9.87 -2.32 (-5.04, 0.40) 0.097

表4

不同特征孕妇的增重(kg)干预效果"

Variables Intervention group (n=90) Control group (n=88) MD (95%CI) P value P value for interaction
Age 0.191
  ≥30 years 5.53±3.29 6.25±3.44 -0.90 (-2.30, 0.50) 0.210
   < 30 years 4.32±4.15 6.83±4.90 -2.30 (-4.20, -0.39) 0.021
BMI categories 0.982
  Overweight 5.71±3.34 7.36±4.34 -1.40 (-2.90, 0.10) 0.070
  Obese 3.84±4.05 5.31±3.93 -1.49 (-3.45, 0.47) 0.141
Region 0.493
  Weifang, Shandong 5.21±3.67 7.34±4.70 -1.76 (-3.48, -0.04) 0.048
  Tongzhou, Beijing 4.78±3.80 5.61±3.52 -1.30 (-2.92, 0.31) 0.117
Parity 0.882
  Primiparous 4.72±3.95 6.52±4.80 -1.63 (-3.2, -0.07) 0.043
  Multiparous 5.48±3.30 6.68±2.57 -1.39 (-3.07, 0.29) 0.111
Socioeconomic status 0.834
  Higher 5.38±2.97 7.01±4.64 -1.91 (-3.51, -0.32) 0.021
  Lower 4.57±4.41 6.13±3.89 -1.62 (-3.42, 0.17) 0.080
1
Goldstein RF , Abell SK , Ranasinha S , et al. Gestational weight gain across continents and ethnicity: Systematic review and meta-analysis of maternal and infant outcomes in more than one million women[J]. BMC Med, 2018, 16 (1): 153.

doi: 10.1186/s12916-018-1128-1
2
Cheikh Ismail L , Bishop DC , Pang R , et al. Gestational weight gain standards based on women enrolled in the Fetal Growth Longitudinal Study of the INTERGROWTH-21st Project: A prospective longitudinal cohort study[J]. BMJ, 2016, 352, i555.
3
Champion ML , Harper LM . Gestational weight gain: Update on outcomes and interventions[J]. Curr Diab Rep, 2020, 20 (3): 11.

doi: 10.1007/s11892-020-1296-1
4
Shen J , Zhang Z , Chen K , et al. Prepregnancy obesity status and risks on pregnancy outcomes in Shanghai: A prospective cohort study[J]. Medicine (Baltimore), 2018, 97 (40): e12670.

doi: 10.1097/MD.0000000000012670
5
Ferrara A , Hedderson MM , Brown SD , et al. A telehealth life-style intervention to reduce excess gestational weight gain in pregnant women with overweight or obesity (GLOW): A randomised, parallel-group, controlled trial[J]. Lancet Diabetes Endocrinol, 2020, 8 (6): 490- 500.

doi: 10.1016/S2213-8587(20)30107-8
6
Simmons D , Devlieger R , van Assche A , et al. Effect of physical activity and/or healthy eating on GDM risk: The DALI lifestyle study[J]. J Clin Endocrinol Metab, 2017, 102 (3): 903- 913.
7
Poston L , Bell R , Croker H , et al. Effect of a behavioural intervention in obese pregnant women (the UPBEAT study): A multicentre, randomised controlled trial[J]. Lancet Diabetes Endocrinol, 2015, 3 (10): 767- 777.

doi: 10.1016/S2213-8587(15)00227-2
8
Sparks JR , Ghildayal N , Hivert MF , et al. Lifestyle interventions in pregnancy targeting GDM prevention: Looking ahead to precision medicine[J]. Diabetologia, 2022, 65 (11): 1814- 1824.

doi: 10.1007/s00125-022-05658-w
9
Niebrzydowska-Tatus M , Pełech A , Rekowska AK , et al. Recent insights and recommendations for preventing excessive gestational weight gain[J]. J Clin Med, 2024, 13 (5): 1461.

doi: 10.3390/jcm13051461
10
Gaillard R . Optimising gestational weight gain among pregnant women with obesity[J]. Lancet, 2024, 403 (10435): 1423- 1425.

doi: 10.1016/S0140-6736(24)00470-7
11
Ritchie C . Rating of perceived exertion (RPE)[J]. J Physio-ther, 2012, 58 (1): 62.

doi: 10.1016/S1836-9553(12)70078-4
12
Metzger BE , Gabbe SG , Persson B , et al. International association of diabetes and pregnancy study groups recommendations on the diagnosis and classification of hyperglycemia in pregnancy[J]. Diabetes Care, 2010, 33 (3): 676- 682.

doi: 10.2337/dc09-1848
13
IPAQ group. Guidelines for data processing and analysis of the International Physical Activity Questionnaire (IPAQ)[EB/OL]. (2005-11-01)[2024-12-23]. http://www.ipaq.ki.se/scoring.html.
14
李梦媛, 王杰, 房玥晖, 等. 应用调整的孕期膳食平衡指数评价孕妇膳食质量[J]. 卫生研究, 2023, 52 (2): 198- 204.
15
Harrison CL , Lombard CB , Strauss BJ , et al. Optimizing healthy gestational weight gain in women at high risk of gestational diabetes: A randomized controlled trial[J]. Obesity (Silver Spring), 2013, 21 (5): 904- 909.

doi: 10.1002/oby.20163
16
Wang C , Wei Y , Zhang X , et al. A randomized clinical trial of exercise during pregnancy to prevent gestational diabetes mellitus and improve pregnancy outcome in overweight and obese pregnant women[J]. Am J Obstet Gynecol, 2017, 216 (4): 340- 351.

doi: 10.1016/j.ajog.2017.01.037
17
Ding B , Gou B , Guan H , et al. WeChat-assisted dietary and exercise intervention for prevention of gestational diabetes mellitus in overweight/obese pregnant women: A two-arm randomized clinical trial[J]. Arch Gynecol Obstet, 2021, 304 (3): 609- 618.

doi: 10.1007/s00404-021-05984-1
18
Gonzalez-Plaza E , Bellart J , Arranz Á , et al. Effectiveness of a step counter smartband and midwife counseling intervention on gestational weight gain and physical activity in pregnant women with obesity (Pas and Pes Study): Randomized controlled trial[J]. JMIR Mhealth Uhealth, 2022, 10 (2): e28886.

doi: 10.2196/28886
19
Sandborg J , Söderström E , Henriksson P , et al. Effectiveness of a smartphone app to promote healthy weight gain, diet, and physical activity during pregnancy (HealthyMoms): Randomized controlled trial[J]. JMIR Mhealth Uhealth, 2021, 9 (3): e26091.

doi: 10.2196/26091
20
Oteng-Ntim E , Varma R , Croker H , et al. Lifestyle interventions for overweight and obese pregnant women to improve pregnancy outcome: Systematic review and meta-analysis[J]. BMC Med, 2012, 10, 47.

doi: 10.1186/1741-7015-10-47
21
Lan X , Zhang YQ , Dong HL , et al. Excessive gestational weight gain in the first trimester is associated with risk of gestational diabetes mellitus: A prospective study from Southwest China[J]. Public Health Nutr, 2020, 23 (3): 394- 401.

doi: 10.1017/S1368980019003513
22
Most J , Broskey NT , Altazan AD , et al. Is energy balance in pregnancy involved in the etiology of gestational diabetes in women with obesity?[J]. Cell Metab, 2019, 29 (2): 231- 233.

doi: 10.1016/j.cmet.2018.12.002
23
Redman LM , Drews KL , Klein S , et al. Attenuated early pregnancy weight gain by prenatal lifestyle interventions does not prevent gestational diabetes in the LIFE-Moms consortium[J]. Diabetes Res Clin Pract, 2021, 171, 108549.

doi: 10.1016/j.diabres.2020.108549
24
Dolatian M , Sharifi N , Mahmoodi Z , et al. Weight gain during pregnancy and its associated factors: A path analysis[J]. Nurs Open, 2020, 7 (5): 1568- 1577.

doi: 10.1002/nop2.539
[1] 张依航, 蔡珊, 陈子玥, 刘云飞, 党佳佳, 师嫡, 李佳欣, 黄天彧, 宋逸. 基于RE-AIM框架儿童青少年近视与肥胖共病综合干预实施性研究结局指标的构建[J]. 北京大学学报(医学版), 2025, 57(3): 436-441.
[2] 刘顺恺, 曹卫华, 吕筠, 余灿清, 黄涛, 孙点剑一, 廖春晓, 庞元捷, 胡润华, 高汝钦, 俞敏, 周金意, 吴先萍, 刘彧, 高文静, 李立明. 肥胖指标与DNA甲基化时钟关系的纵向双生子研究[J]. 北京大学学报(医学版), 2025, 57(3): 456-464.
[3] 刘慧丽, 闻蓓, 白雪, 陈明安, 李民. 体重校正腰围指数与疼痛的相关性:一项横断面研究[J]. 北京大学学报(医学版), 2025, 57(1): 178-184.
[4] 岳芷涵,韩娜,鲍筝,吕瑾莨,周天一,计岳龙,王辉,刘珏,王海俊. 儿童早期体重指数轨迹与超重风险关联的前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 390-396.
[5] 陈敬,单蕊,肖伍才,张晓蕊,刘峥. 青春期和成年早期自制力与抑郁症状和超重肥胖共病风险的关联:基于全国调查的十年前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 397-402.
[6] 吴一凡,玉应香,谢岚,张志达,常翠青. 不同体重指数青年男性的静息能量消耗特点及预测方程评价[J]. 北京大学学报(医学版), 2024, 56(2): 247-252.
[7] 陈楚云,孙蓬飞,赵静,贾佳,范芳芳,王春燕,李建平,姜一梦,霍勇,张岩. 北京社区人群促红细胞生成素相关因素及其与10年心血管疾病风险的关系[J]. 北京大学学报(医学版), 2023, 55(6): 1068-1073.
[8] 党佳佳,蔡珊,钟盼亮,王雅琪,刘云飞,师嫡,陈子玥,张依航,胡佩瑾,李晶,马军,宋逸. 室外夜间人工光暴露与中国9~18岁儿童青少年超重肥胖的关联[J]. 北京大学学报(医学版), 2023, 55(3): 421-428.
[9] 陈敬,肖伍才,单蕊,宋洁云,刘峥. DRD2基因rs2587552多态性对儿童肥胖干预效果的影响:一项前瞻性、平行对照试验[J]. 北京大学学报(医学版), 2023, 55(3): 436-441.
[10] 马涛,李艳辉,陈曼曼,马莹,高迪,陈力,马奇,张奕,刘婕妤,王鑫鑫,董彦会,马军. 青春期启动提前与儿童肥胖类型的关联研究: 基于横断面调查和队列调查[J]. 北京大学学报(医学版), 2022, 54(5): 961-970.
[11] 朱忆颖,闵赛南,俞光岩. 局部注射环孢素A对非肥胖糖尿病小鼠下颌下腺分泌功能及炎症的影响[J]. 北京大学学报(医学版), 2021, 53(4): 750-757.
[12] 那晓娜,朱珠,陈阳阳,王东平,王浩杰,宋阳,马晓川,王培玉,刘爱萍. 身体活动、静坐行为的时间分布与肥胖的关系[J]. 北京大学学报(医学版), 2020, 52(3): 486-491.
[13] 张晓圆,郭成成,玉应香,谢岚,常翠青. 高脂饲料诱导肥胖胰岛素抵抗大鼠模型的建立[J]. 北京大学学报(医学版), 2020, 52(3): 557-563.
[14] 郭成成,张晓圆,玉应香,谢岚,常翠青. 绿原酸对高脂饲料诱导的肥胖大鼠糖耐量及其曲线特征的影响[J]. 北京大学学报(医学版), 2020, 52(2): 269-274.
[15] 董彦会,宋逸,董彬,邹志勇,王政和,杨招庚,王西婕,李艳辉,马军. 2014年中国7~18岁学生血压状况与营养状况的关联分析——基于中国儿童青少年血压评价标准[J]. 北京大学学报(医学版), 2018, 50(3): 422-428.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!