北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (3): 537-544. doi: 10.19723/j.issn.1671-167X.2025.03.018

• 论著 • 上一篇    下一篇

慢性阻塞性肺疾病患者体力活动与死亡风险的前瞻性关联

张烁1, 兰勇兵1, 孙点剑一1,2,3, 裴培2, 杜怀东4, 陈君石5, 陈铮鸣4, 吕筠1,2,3,6, 李立明1,2,3, 余灿清1,2,3,*(), (代表中国慢性病前瞻性研究项目协作组)   

  1. 1. 北京大学公共卫生学院流行病与卫生统计学系, 北京 100191
    2. 北京大学公众健康与重大疫情防 控战略研究中心, 北京 100191
    3. 重大疾病流行病学教育部重点实验室(北京大学), 北京 100191
    4. Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
    5. 国家食品安全风险评估中心, 北京 100022
    6. 北京大学血管稳态与重构全国重点实验室, 北京 100191
  • 收稿日期:2025-02-04 出版日期:2025-06-18 发布日期:2025-06-13
  • 通讯作者: 余灿清
  • 基金资助:
    四大慢病重大专项(2023ZD0510100); 国家自然科学基金(82192901); 国家自然科学基金(82192904); 国家自然科学基金(82192900); 国家自然科学基金(82388102); 英国Wellcome Trust(212946/Z/18/Z); 英国Wellcome Trust(202922/Z/16/Z); 英国Wellcome Trust(104085/Z/14/Z); 英国Wellcome Trust(088158/Z/09/Z); 香港Kadoorie Charitable基金

Prospective association between physical activity and mortality in patients with chronic obstructive pulmonary disease

Shuo ZHANG1, Yongbing LAN1, Dianjianyi SUN1,2,3, Pei PEI2, Huaidong DU4, Junshi CHEN5, Zhengming CHEN4, Jun LV1,2,3,6, Liming LI1,2,3, Canqing YU1,2,3,*(), (for the China Kadoorie Biobank Collaborative Group)   

  1. 1. Department of Epidemiology & Biostatistics, Peking University School of Public Health, Beijing 100191, China
    2. Peking University Center for Public Health and Epidemic Preparedness & Response, Beijing 100191, China
    3. Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing 100191, China
    4. Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford OX3 7LF, UK
    5. China National Center for Food Safety Risk Assessment, Beijing 100022, China
    6. State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing 100191, China
  • Received:2025-02-04 Online:2025-06-18 Published:2025-06-13
  • Contact: Canqing YU
  • Supported by:
    the Noncommunicable Chronic Diseases-National Science and Technology Major Project(2023ZD0510100); National Natural Science Foundation of China(82192901); National Natural Science Foundation of China(82192904); National Natural Science Foundation of China(82192900); National Natural Science Foundation of China(82388102); Wellcome grants to Oxford University(212946/Z/18/Z); Wellcome grants to Oxford University(202922/Z/16/Z); Wellcome grants to Oxford University(104085/Z/14/Z); Wellcome grants to Oxford University(088158/Z/09/Z); Kadoorie Charitable Foundation in Hong Kong

RICH HTML

  

摘要:

目的: 探讨中国成人慢性阻塞性肺疾病(chronic obstructive pulmonary disease, COPD)患者体力活动水平与死亡风险的前瞻性关联。方法: 基于中国慢性病前瞻性研究(China Kadoorie Biobank, CKB)项目, 采用Cox比例风险回归模型分析中国成人COPD患者中总体力活动、不同强度(低、中高强度)及不同类型(工作、非工作)体力活动水平与全因死亡、主要死因死亡风险的前瞻性关联, 根据体力活动水平的五分位数分为5组(Q1~Q5), 将体力活动水平最低五分位数组(Q1)作为对照组, 计算其余各组(Q2~Q5)风险比(hazard ratio, HR)及其95%置信区间(confidence interval, CI), 同时实施了敏感性分析及亚组分析, 包括年龄、性别、自评健康状况、COPD严重程度等。结果: 基线时纳入33 588例COPD患者, 平均随访(11.1±3.1)年, 共记录到死亡8 314人(22.3%)。总体力活动水平与全因死亡、血管疾病及呼吸系统疾病死亡风险之间存在线性负相关(线性趋势检验P值依次为 < 0.001、0.002、 < 0.001), 与总体力活动水平最低五分位数组(Q1)相比, 最高五分位数组(Q5)对应的全因死亡、血管疾病及呼吸系统疾病死亡风险HR值(95%CI)分别为0.77 (0.70, 0.85)、0.77 (0.65, 0.91)、0.58 (0.48, 0.71)。低强度、中高强度体力活动均与COPD患者全因死亡风险存在线性负相关关联(线性趋势检验P值依次为0.002、 < 0.001), 与低强度、中高强度体力活动水平最低五分位数组(Q1)相比, 最高五分位数组(Q5)全因死亡风险对应的HR值(95%CI)分别为0.89 (0.82, 0.97)、0.79 (0.72, 0.87)。工作、非工作相关体力活动亦与COPD患者全因死亡风险存在线性负相关关联(线性趋势检验P值依次为 < 0.001、0.015), 与工作、非工作相关体力活动水平最低五分位数组(Q1)相比, 最高五分位数组(Q5)全因死亡风险对应的HR值(95%CI)分别为0.69 (0.61, 0.78), 0.91 (0.84, 0.98)。对于年龄≥60岁、女性、自评健康状况较差的人群, 总体力活动与全因死亡风险负相关性更为显著。对于不同严重程度的COPD患者, 随着总体力活动的增加, 全因死亡风险均呈下降趋势。结论: 总体力活动、不同强度、不同类别的体力活动均与COPD患者的死亡风险呈负相关, 且存在剂量反应关系。对于年龄≥60岁、女性、自评健康状况较差的人群, 总体力活动与全因死亡风险负相关性更为显著。

关键词: 慢性阻塞性肺疾病, 体力活动, 死亡, 前瞻性关联

Abstract:

Objective: To explore the prospective association between physical activity level and mortality risk in Chinese adults with chronic obstructive pulmonary disease (COPD). Methods: Based on the China Kadoorie Biobank (CKB) who had COPD at the baseline survey, this study employed the Cox proportional hazards regression model to estimate the prospective associations between the overall physical activity, different intensities (low-level, moderate-to-vigorous-level), and types (occupational, non-occupational) of physical activity level and the risks of all-cause and cause-specific mortality, such as vascular diseases, cancer, and respiratory diseases. Based on the quintiles of physical activity level, participants were divided into five groups (Q1-Q5), with the lowest quintile group (Q1) as the reference group. Hazard ratio (HR) and 95% confidence interval (95%CI) were calculated for the remaining. In our study, we also performed sensitivity and subgroup analyses, including age, gender, self-rated health status, severity of COPD, etc. Results: Among 33 588 COPD patients at the baseline survey, 8 314 (22.2%) deaths were documented during an average follow-up of (11.1±3.1) years. Negative linear associations between the overall physical activity level and mortality risk from all-cause, vascular, and respiratory diseases were observed (P trend for linear correlation being < 0.001, 0.002, < 0.001). Compared with the lowest quintile group of total physical activity (Q1), the hazard ratios (HR) and 95% confidence intervals (CI) for all-cause mortality, vascular disease mortality, and respiratory disease mortality in the highest quintile group (Q5) were 0.77 (0.70, 0.85), 0.77 (0.65, 0.91), and 0.58 (0.48, 0.71), respectively. The low-level and moderate-to-vigorous-level physical activity were negatively associated with all-cause mortality in the COPD patients (P trend for linear correlation: 0.002, < 0.001, respectively). Compared with the lowest quintile group of low-intensity and moderate-to-vigorous intensity physical activity (Q1), the HRs (95%CI) for all-cause mortality in the highest quintile group (Q5) were 0.89 (0.82, 0.97) and 0.79 (0.72, 0.87), respectively. The occupational and non-occupational physical activity were also found to have a linear inverse association with all-cause mortality risk among the COPD patients (P trend < 0.001 and 0.015, respectively). Compared with the lowest quintile group of occupational and non-occupational physical activity (Q1), the HR (95%CI) for all-cause mortality in the highest quintile group (Q5) were 0.69 (0.61, 0.78) and 0.91 (0.84, 0.98), respectively. The associations between overall physical activity and all-cause mortality risk were stronger for patients aged 60 and above, female, and who reported poor health status (P for interaction: 0.028, 0.012, 0.010). The protective effect of total physical activity was also applicable to the COPD patients of varying severity. Conclusion: Physical activity could reduce the mortality risk in a dose-response relationship among COPD patients, regardless of its intensity and type, especially among individuals aged 60 and above, females, and those with poor self-report health status.

Key words: Chronic obstructive pulmonary disease, Physical activity, Mortality, Prospective association

中图分类号: 

  • R184

表1

COPD患者的基线特征分布"

Characteristic Quintiles of total physical activity F/χ2 P
Q1 (n=6 774) Q2 (n=6 668) Q3 (n=6 731) Q4 (n=6 698) Q5 (n=6 717)
Age/years,${\bar x}$±s 64.4±8.8 61.6±9.7 58.1±10.5 55.0±10.3 52.0±9.5 1 746.7 < 0.001
Gender, n (%) 1 155.9 < 0.001
  Female 2 405 (35.5) 4 174 (62.6) 3 655 (54.3) 3 697 (55.2) 3 009 (44.8)
  Male 4 369 (64.5) 2 494 (37.4) 3 076 (45.7) 3 001 (44.8) 3 708 (55.2)
Area, n (%) 538.2 < 0.001
  Urban 3 069 (45.3) 2 714 (40.7) 2 275 (33.8) 1 842 (27.5) 2 317 (34.5)
  Rural 3 705 (54.7) 3 954 (59.3) 4 456 (66.2) 4 856 (72.5) 4 400 (65.5)
Married, n (%) 19.44 0.001
  Married 5 731 (84.6) 5 661 (84.9) 5 829 (86.6) 5 800 (86.6) 5 803 (86.4)
  Other 1 043 (15.4) 1 007 (15.1) 902 (13.4) 898 (13.4) 914 (13.6)
Education, n (%) 86.72 < 0.001
  Middle school and higher 2 249 (33.2) 2 174 (32.6) 2 214 (32.9) 2 043 (30.5) 1 840 (27.4)
  Primary school and lower 4 525 (66.8) 4 494 (67.4) 4 517 (67.1) 4 655 (69.5) 4 877 (72.6)
Household income, n (%) 55.75 < 0.001
  ≥20 000 yuan/year 2 113 (31.2) 2 274 (34.1) 2 430 (36.1) 2 197 (32.8) 2 230 (33.2)
   < 20 000 yuan/year 4 661 (68.8) 4 394 (65.9) 4 301 (63.9) 4 501 (67.2) 4 487 (66.8)
Occupation, n (%) 3 949.37 < 0.001
  Agriculture and industrial 2 174 (32.1) 2 634 (39.5) 4 146 (61.6) 4 930 (73.6) 5 145 (76.6)
  Other occupation 4 600 (67.9) 4 034 (60.5) 2 585 (38.4) 1 768 (26.4) 1 572 (23.4)
Regular consumption of meat, n (%) 31.86 < 0.001
  ≥4 d/week 2 757 (40.7) 2 674 (40.1) 2 612 (38.8) 2 451 (36.6) 2 646 (39.4)
   < 4 d/week 4 017 (59.3) 3 994 (59.9) 4 119 (61.2) 4 247 (63.4) 4 071 (60.6)
Regular consumption of fresh vegetables, n (%) 12.81 0.012
  ≥4 d/week 6 672 (98.5) 6 588 (98.8) 6 643 (98.7) 6 571 (98.1) 6 616 (98.5)
   < 4 d/week 102 (1.5) 80 (1.2) 88 (1.3) 127 (1.9) 101 (1.5)
Regular consumption of fresh fruit, n (%) 104.56 < 0.001
  ≥4 d/week 1 531 (22.6) 1 607 (24.1) 1 602 (23.8) 1 326 (19.8) 1 209 (18.0)
   < 4 d/week 5 243 (77.4) 5 061 (75.9) 5 129 (76.2) 5 372 (80.2) 5 508 (82.0)
Drinking status, n (%) 52.19 < 0.001
  Current weekly drinker 2 683 (39.6) 2 627 (39.4) 2 706 (40.2) 2 693 (40.2) 2 821 (42.0)
  Non-current weekly drinker 4 091 (60.4) 4 041 (60.6) 4 025 (59.8) 4 005 (59.8) 3 896 (58.0)
Smoking status, n (%) 18.58 0.001
  Current daily smoker 1 009 (14.9) 1 014 (15.2) 1 198 (17.8) 1 192 (17.8) 1 243 (18.5)
  Non-current smoker 5 765 (85.1) 5 654 (84.8) 5 533 (82.2) 5 506 (82.2) 5 474 (81.5)
BMI/(kg/m2),${\bar x}$±s 22.8±3.8 22.8±3.7 22.8±3.5 22.5±3.4 22.5±3.2 10.65 < 0.001
Sedentary/ (h/d),${\bar x}$±s 3.5±2.0 3.5±1.8 3.1±1.6 2.7±1.5 2.5±1.4 390.75 < 0.001
GOLD, n (%) 456.27 < 0.001
  1 1 687 (24.9) 1 840 (27.6) 2 006 (29.8) 1 942 (29.0) 2 042 (30.4)
  2 3 184 (47.0) 3 194 (47.9) 3 150 (46.8) 3 275 (48.9) 3 379 (50.3)
  3 1 429 (21.1) 1 300 (19.5) 1 292 (19.2) 1 233 (18.4) 1 101 (16.4)
  4 474 (7.0) 334 (5.0) 283 (4.2) 248 (3.7) 195 (2.9)
Self-assessed health status, n (%) 362.41 < 0.001
  Excellent 644 (9.5) 785 (11.8) 828 (12.3) 824 (12.3) 804 (11.9)
  Good 1 361 (20.1) 1 426 (21.4) 1 615 (24.0) 1 567 (23.4) 1 798 (26.8)
  Average 2 994 (44.2) 3 065 (45.9) 3 110 (46.2) 3 182 (47.5) 3 054 (45.5)
  Poor 1 775 (26.2) 1 392 (20.9) 1 178 (17.5) 1 125 (16.8) 1 061 (15.8)
Coronary heart disease, n (%) 46.98 < 0.001
  Yes 318 (4.7) 280 (4.2) 269 (4.0) 174 (2.6) 154 (2.3)
  No 6 456 (95.3) 6 388 (95.8) 6 462 (96.0) 6 524 (97.4) 6 563 (97.7)
Diabetes, n (%) 62.14 < 0.001
  Yes 271 (4.0) 240 (3.6) 168 (2.5) 147 (2.2) 114 (1.7)
  No 6 503 (96.0) 6 428 (96.4) 6 563 (97.5) 6 551 (97.8) 6 603 (98.3)
Kidney disease, n (%) 14.35 0.006
  Yes 163 (2.4) 120 (1.8) 108 (1.6) 127 (1.9) 101 (1.5)
  No 6 611 (97.6) 6 548 (98.2) 6 623 (98.4) 6 571 (98.1) 6 616 (98.5)
Stroke, n (%) 101.74 < 0.001
  Yes 217 (3.2) 133 (2.0) 94 (1.4) 60 (0.9) 60 (0.9)
  No 6 557 (96.8) 6 535 (98.0) 6 637 (98.6) 6 638 (99.1) 6 657 (99.1)

表2

COPD患者中总体力活动与死亡风险的关联"

Quintiles of total physical activity P
Q1 Q2 Q3 Q4 Q5
All-cause mortality
  Number of deaths, n 2 764 1 955 1 558 1 195 842
  Mortality rate/% 40.4 26.8 20.5 15.5 10.6
  Model 1, HR(95%CI) 1.00 0.83 (0.78, 0.88) 0.76 (0.70, 0.81) 0.69 (0.63, 0.74) 0.63 (0.58, 0.69) < 0.001
  Model 2, HR(95%CI) 1.00 0.90 (0.84, 0.95) 0.85 (0.79, 0.91) 0.78 (0.72, 0.85) 0.77 (0.70, 0.85) < 0.001
Vascular disease mortality
  Number of deaths, n 1 069 749 506 372 244
  Mortality rate/% 15.6 10.3 6.7 4.8 3.1
  Model 1, HR(95%CI) 1.00 0.81 (0.74, 0.89) 0.75 (0.66, 0.84) 0.73 (0.63, 0.84) 0.66 (0.56, 0.77) < 0.001
  Model 2, HR(95%CI) 1.00 0.88 (0.80, 0.97) 0.83 (0.73, 0.93) 0.82 (0.71, 0.94) 0.77 (0.65, 0.91) 0.002
Malignant tumor mortality
  Number of deaths, n 619 470 383 327 287
  Mortality rate/% 9.1 6.4 5.1 4.2 3.6
  Model 1, HR(95%CI) 1.00 1.01 (0.90, 1.15) 0.91 (0.79, 1.05) 0.88 (0.75, 1.03) 0.88 (0.74, 1.04) 0.105
  Model 2, HR(95%CI) 1.00 1.03 (0.91, 1.16) 0.94 (0.82, 1.09) 0.91 (0.77, 1.08) 0.92 (0.78, 1.10) 0.293
Respiratory disease mortality
  Number of deaths, n 702 493 427 288 165
  Mortality rate/% 10.3 6.8 5.6 3.7 2.1
  Model 1, HR(95%CI) 1.00 0.74 (0.66, 0.83) 0.61 (0.53, 0.70) 0.45 (0.38, 0.53) 0.37 (0.31, 0.46) < 0.001
  Model 2, HR(95%CI) 1.00 0.86 (0.76, 0.97) 0.76 (0.66, 0.87) 0.58 (0.49, 0.69) 0.58 (0.48, 0.71) < 0.001

表3

COPD患者中总体力活动与全因死亡风险的亚组分析"

Quintiles of total physical activity P(LR χ2)
Q1 Q2 Q3 Q4 Q5
Age group/years 0.028 (7.12)
  30- 1.00 1.19 (0.76, 1.86) 1.06 (0.68, 1.65) 1.02 (0.66, 1.59) 1.15 (0.75, 1.77)
  50- 1.00 0.88 (0.73, 1.06) 0.86 (0.71, 1.04) 0.81 (0.67, 0.99) 0.81 (0.66, 0.99)
  60- 1.00 0.90 (0.84, 0.96) 0.85 (0.79, 0.92) 0.79 (0.72, 0.87) 0.77 (0.68, 0.86)
Area 0.125 (2.35)
  Rural 1.00 0.89 (0.83, 0.96) 0.85 (0.78, 0.92) 0.79 (0.72, 0.86) 0.75 (0.68, 0.83)
  Urban 1.00 0.93 (0.84, 1.04) 0.88 (0.77, 1.01) 0.80 (0.65, 0.97) 0.86 (0.70, 1.06)
Gender 0.012 (6.24)
  Male 1.00 0.90 (0.83, 0.97) 0.90 (0.82, 0.98) 0.83 (0.75, 0.92) 0.81 (0.73, 0.91)
  Female 1.00 0.86 (0.78, 0.95) 0.77 (0.68, 0.87) 0.67 (0.58, 0.77) 0.64 (0.53, 0.76)
Smoking status 0.109 (2.57)
  Non-current smoker 1.00 0.91 (0.83, 0.99) 0.82 (0.74, 0.92) 0.76 (0.67, 0.86) 0.71 (0.61, 0.82)
  Current daily smoker 1.00 0.88 (0.81, 0.96) 0.86 (0.78, 0.95) 0.79 (0.71, 0.88) 0.79 (0.70, 0.89)
Drinking status 0.004 (8.12)
  Non-current weekly drinker 1.00 0.92 (0.86, 0.98) 0.86 (0.80, 0.93) 0.78 (0.71, 0.85) 0.77 (0.69, 0.86)
  Current weekly drinker 1.00 0.74 (0.62, 0.87) 0.75 (0.63, 0.89) 0.74 (0.61, 0.89) 0.71 (0.58, 0.87)
Sedentary/(h/d) 0.158 (1.99)
   < 3 1.00 0.91 (0.82, 1.00) 0.83 (0.75, 0.93) 0.78 (0.68, 0.88) 0.75 (0.66, 0.86)
  ≥3 1.00 0.88 (0.81, 0.95) 0.85 (0.77, 0.93) 0.78 (0.70, 0.87) 0.78 (0.68, 0.89)
GOLD 0.016 (8.32)
  1 1.00 0.92 (0.78, 1.09) 0.84 (0.69, 1.03) 0.76 (0.60, 0.95) 0.76 (0.60, 0.97)
  2 1.00 0.95 (0.87, 1.04) 0.95 (0.85, 1.06) 0.91 (0.81, 1.04) 0.87 (0.76, 1.00)
  3-4 1.00 0.82 (0.75, 0.90) 0.74 (0.66, 0.82) 0.66 (0.58, 0.74) 0.64 (0.55, 0.75)
BMI/(kg/m2) 0.003 (14.30)
  Underweight 1.00 0.86 (0.75, 0.99) 0.78 (0.66, 0.92) 0.64 (0.53, 0.78) 0.57 (0.45, 0.71)
  Normal weight 1.00 0.88 (0.81, 0.95) 0.80 (0.73, 0.89) 0.73 (0.65, 0.81) 0.71 (0.63, 0.80)
  Overweight 1.00 0.86 (0.75, 0.98) 0.81 (0.69, 0.96) 0.91 (0.75, 1.11) 0.77 (0.61, 0.96)
  Obese 1.00 1.02 (0.78, 1.33) 1.08 (0.81, 1.44) 0.60 (0.39, 0.91) 0.80 (0.49, 1.32)
Self-assessed health status 0.010 (11.34)
  Excellent 1.00 0.99 (0.78, 1.24) 0.91 (0.69, 1.20) 0.90 (0.65, 1.23) 0.95 (0.68, 1.33)
  Good 1.00 0.87 (0.75, 1.02) 0.82 (0.69, 0.98) 0.78 (0.64, 0.95) 0.70 (0.57, 0.86)
  Average 1.00 0.87 (0.80, 0.95) 0.87 (0.78, 0.96) 0.78 (0.69, 0.88) 0.73 (0.63, 0.84)
  Poor 1.00 0.85 (0.76, 0.95) 0.71 (0.62, 0.81) 0.61 (0.53, 0.71) 0.58 (0.48, 0.71)

图1

COPD患者不同强度体力活动与全因死亡风险的关联"

图2

COPD患者不同类型体力活动与全因死亡风险的关联"

1
慢性阻塞性肺疾病急性加重诊治专家组. 慢性阻塞性肺疾病急性加重诊治中国专家共识[J]. 国际呼吸杂志, 2023, 43 (2): 132- 149.
2
Global Initiative for Chronic Obstructive Lung Disease (GOLD). Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: 2025 update[EB/OL]. (2025-01-01)[2025-01-15]. https://www.goldcopd.org.
3
Wang C , Xu J , Yang L , et al. Prevalence and risk factors of chronic obstructive pulmonary disease in China (the China Pulmonary Health [CPH] study): A national cross-sectional study[J]. Lancet, 2018, 391 (10131): 1706- 1717.

doi: 10.1016/S0140-6736(18)30841-9
4
Zhong N , Wang C , Yao W , et al. Prevalence of chronic obstructive pulmonary disease in China[J]. Am J Respir Crit Care Med, 2007, 176 (8): 753- 760.

doi: 10.1164/rccm.200612-1749OC
5
Chen S , Kuhn M , Prettner K , et al. The global economic burden of chronic obstructive pulmonary disease for 204 countries and territories in 2020-50: A health-augmented macroeconomic modelling study[J]. Lancet Glob Health, 2023, 11 (8): e1183- e1193.

doi: 10.1016/S2214-109X(23)00217-6
6
World Health Organization. WHO guidelines on physical activity and sedentary behaviour [EB/OL]. (2020-11-25)[2024-12-25]. https://www.who.int/publications/i/item/9789240015128.
7
Rabe KF , Watz H . Chronic obstructive pulmonary disease[J]. Lancet, 2017, 389 (10082): 1931- 1940.

doi: 10.1016/S0140-6736(17)31222-9
8
Chen Z , Chen J , Collins R , et al. China Kadoorie Biobank of 0.5 million people: Survey methods, baseline characteristics and long-term follow-up[J]. Int J Epidemiol, 2011, 40 (6): 1652- 1666.

doi: 10.1093/ije/dyr120
9
Chen Z , Lee L , Chen J , et al. Cohort profile: The kadoorie study of chronic disease in China (KSCDC)[J]. Int J Epidemiol, 2005, 34 (6): 1243- 1249.

doi: 10.1093/ije/dyi174
10
Ainsworth BE , Haskell WL , Herrmann SD , et al. 2011 compendium of physical activities: A second update of codes and MET values[J]. Med Sci Sports Exerc, 2011, 43 (8): 1575- 1581.

doi: 10.1249/MSS.0b013e31821ece12
11
樊萌语, 吕筠, 郭彧, 等. 中国慢性病前瞻性研究: 10个项目地区成人体力活动和休闲静坐时间特征差异的分析[J]. 中华流行病学杂志, 2015, 36 (8): 779- 785.
12
中华人民共和国国家卫生健康委员会医政司. 肥胖症诊疗指南(2024年版)[J]. 中华消化外科杂志, 2024, 23 (10): 1237- 1260.

doi: 10.3760/cma.j.cn115610-20241017-00455
13
Cheng SWM , McKeough Z , Alison J , et al. Associations of total and type-specific physical activity with mortality in chronic obstructive pulmonary disease: A population-based cohort study[J]. BMC Public Health, 2018, 18 (1): 268.

doi: 10.1186/s12889-018-5167-5
14
孙明希, 温启邦, 涂华康, 等. 4种慢性病共病模式及运动与全因死亡的相关性研究[J]. 中华流行病学杂志, 2022, 43 (12): 1952- 1958.
15
Waschki B , Kirsten A , Holz O , et al. Physical activity is the strongest predictor of all-cause mortality in patients with COPD: A prospective cohort study[J]. Chest, 2011, 140 (2): 331- 342.

doi: 10.1378/chest.10-2521
16
Garcia-Rio F , Rojo B , Casitas R , et al. Prognostic value of the objective measurement of daily physical activity in patients with COPD[J]. Chest, 2012, 142 (2): 338- 346.

doi: 10.1378/chest.11-2014
17
Kim T , Kim H , Kong S , et al. Association between regular moderate to vigorous physical activity initiation following COPD diagnosis and mortality: An emulated target trial using nationwide cohort data[J]. Chest, 2024, 165 (1): 84- 94.

doi: 10.1016/j.chest.2023.07.017
18
Moy ML , Gould MK , Liu IA , et al. Physical activity assessed in routine care predicts mortality after a COPD hospitalisation[J]. ERJ Open Res, 2016, 2 (1): 00062- 2015.
19
Yuan LD , Zhang LH , Wang Y , et al. The impact of leisure-time physical activity and sedentary behavior on mortality in patients with chronic obstructive pulmonary disease[J]. Am J Phys Med Rehabil, 2025, 104 (4): e49- e57.

doi: 10.1097/PHM.0000000000002612
20
Kontro TK , Sarna S , Kaprio J , et al. The difference in risk of chronic pulmonary disease morbidity and mortality between former elite athletes and ordinary men in Finland[J]. Eur J Sport Sci, 2020, 20 (8): 1140- 1149.

doi: 10.1080/17461391.2019.1697375
21
Loprinzi PD , Sng E , Walker JF . Muscle strengthening activity associates with reduced all-cause mortality in COPD[J]. Chronic Illn, 2017, 13 (2): 140- 147.
22
MacDonald DM , Samorodnitsky S , Lock EF , et al. Biomarkers of inflammation and longitudinal evaluation of lung function, physical activity, and grip strength: A secondary analysis in the CASCADE study[J]. Chronic Obstr Pulm Dis, 2024, 11 (4): 396- 405.
23
Obling N , Backer V , Hurst JR , et al. Nasal and systemic inflammation in chronic obstructive pulmonary disease (COPD)[J]. Respir Med, 2022, 195, 106774.
24
Ito JT , Alves LHV , Oliveira LDM , et al. Effect of exercise trai-ning on modulating the TH17/TREG imbalance in individuals with severe COPD: A randomized controlled trial[J]. Pulmonology, 2025, 31 (1): 2441069.
25
Wang XS , Liu C , Liang RN , et al. Elucidating the beneficial impact of exercise on chronic obstructive pulmonary disease and its comorbidities: Integrating proteomic and immunological insights[J]. Br J Pharmacol, 2024, 181 (24): 5133- 5150.
26
Nymand SB , Hartmann JP , Ryrsø CK , et al. Exercise adaptations in COPD: The pulmonary perspective[J]. Am J Physiol Lung Cell Mol Physiol, 2022, 323 (6): L659- L666.
27
Hu YZ, Sun QF, Han YT, et al. Role of lifestyle factors on the development and long-term prognosis of pneumonia and cardiovascular disease in the Chinese population[J]. Chin Med J (Engl), 2024, 8 (2024-08-28)[2024-12-26]. https://pubmed.ncbi.nlm.nih.gov/39193696.
[1] 刘畅, 李炤, 金蕾, 刘春毅, 王春静, 张杰, 靳蕾. 母亲围受孕期服用叶酸营养素补充剂与围产儿死亡率的关系[J]. 北京大学学报(医学版), 2025, 57(3): 473-480.
[2] 许秋实, 刘彤, 王俊杰. 铁死亡相关长链非编码核糖核酸预测放射治疗后非小细胞肺癌患者的临床结局[J]. 北京大学学报(医学版), 2025, 57(3): 569-577.
[3] 赵柯林, 夏雪, 史乃旭, 周韩, 盖婧雯, 李萍. 铁死亡标志物4-HNE在系统性硬化症细胞模型中的表达及意义[J]. 北京大学学报(医学版), 2024, 56(6): 950-955.
[4] 王裕新, 曹茹, 黄婧, Pitakchon Ponsawansong, Benjawan Tawatsupa, 潘小川, Tippawan Prapamontol, 李国星. 不同表观温度水平下大气细颗粒物暴露对人群非意外死亡的影响[J]. 北京大学学报(医学版), 2024, 56(5): 820-827.
[5] 周庆欣,杨晴晴,石舒原,李沛,孙凤. 健康体检人群血尿酸与气流阻塞的相关性[J]. 北京大学学报(医学版), 2024, 56(4): 693-699.
[6] 徐训敏,邵校,姬爱平. 口腔急诊科死亡病例分析[J]. 北京大学学报(医学版), 2024, 56(1): 185-189.
[7] 王子恺,莫佳丽,张蒙,廖纪萍. 2013—2020年北京市慢性阻塞性肺疾病急性加重女性住院患者的流行病学和住院费用分析[J]. 北京大学学报(医学版), 2023, 55(6): 1074-1081.
[8] 汪雨欣,邓宇含,谭银亮,刘宝花. 应激性血糖升高对重症监护病房患者28 d全因死亡风险的预测价值[J]. 北京大学学报(医学版), 2023, 55(3): 442-449.
[9] 李东,邸吉廷,熊焰. 程序性细胞死亡1-配体1在不同免疫组织化学染色方法的一致性比较[J]. 北京大学学报(医学版), 2023, 55(2): 339-342.
[10] 熊焰,张波,聂立功,吴世凯,赵虎,李东,邸吉廷. 胸部SMARCA4缺失性未分化肿瘤的病理诊断与联合免疫检测点抑制剂治疗[J]. 北京大学学报(医学版), 2023, 55(2): 351-356.
[11] 赵亚楠,范慧芸,王翔宇,罗雅楠,张嵘,郑晓瑛. 孤独症患者过早死亡风险及死亡原因[J]. 北京大学学报(医学版), 2023, 55(2): 375-383.
[12] 刘云飞,党佳佳,钟盼亮,马宁,师嫡,宋逸. 1990—2019年中国5~24岁人群伤害死亡率分析[J]. 北京大学学报(医学版), 2022, 54(3): 498-504.
[13] 刘杰,郭超. 正/负性情绪对中国老年人死亡风险影响的前瞻性队列研究[J]. 北京大学学报(医学版), 2022, 54(2): 255-260.
[14] 顾阳春,刘颖,谢超,曹宝山. 程序性死亡蛋白-1抑制剂治疗晚期肺癌出现垂体免疫不良反应3例[J]. 北京大学学报(医学版), 2022, 54(2): 369-375.
[15] 包海荣,刘晓菊,谭恩丽,舒娟,董继元,李盛. 兰州市气温和相对湿度对慢性阻塞性肺疾病患者门诊就诊人次的影响及其交互效应[J]. 北京大学学报(医学版), 2020, 52(2): 308-316.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!