北京大学学报(医学版) ›› 2022, Vol. 54 ›› Issue (2): 346-355. doi: 10.19723/j.issn.1671-167X.2022.02.024

• 论著 • 上一篇    下一篇

锥形束CT研究上颌反复扩缩前方牵引后上颌骨缝的三维变化

刘伟涛,王怡然(),王雪东,周彦恒   

  1. 北京大学口腔医学院·口腔医院正畸科,国家口腔医学中心,国家口腔疾病临床医学研究中心,口腔生物材料和数字诊疗装备国家工程研究中心,口腔数字医学北京市重点实验室,北京 100081
  • 收稿日期:2021-11-09 出版日期:2022-04-18 发布日期:2022-04-13
  • 通讯作者: 王怡然 E-mail:elaine1990@163.com
  • 基金资助:
    国家重大疾病多学科合作诊疗能力建设项目(PKUSSNMP-202013)

A cone-beam computed tomography evaluation of three-dimensional changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions

LIU Wei-tao,WANG Yi-ran(),WANG Xue-dong,ZHOU Yan-heng   

  1. Department of Orthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China
  • Received:2021-11-09 Online:2022-04-18 Published:2022-04-13
  • Contact: Yi-ran WANG E-mail:elaine1990@163.com
  • Supported by:
    National Program for Multidisciplinary Cooperative Treatment on Major Diseases(PKUSSNMP-202013)

摘要:

目的: 使用锥形束CT (cone-beam computed tomography,CBCT)影像研究上颌反复快速扩缩前方牵引后上颌及周围骨缝的三维变化,探讨该变化与颧颌缝成熟度之间的关系,分析上颌前移的影响因素,为骨性Ⅲ类错牙合畸形的早期治疗提供参考。方法: 选择36例上颌后缩患者,使用随机化区组设计分为单次扩弓组和反复扩缩组(临床试验注册号:ChiCTR2000034909), 患者7~13岁,安氏Ⅲ类错牙合,前牙反牙合,头影测量显示ANB角<0°,Wits值<-2 mm,上齿槽座点(A点)至过鼻根点(N点)的眼耳平面垂线的距离(A-Np)<0 mm。单次扩弓组行上颌单次快速扩弓后面罩前方牵引,反复扩缩组行上颌反复快速扩缩后面罩前方牵引。使用Dolphin 11.7软件对每组治疗前后的CBCT影像进行头位校正,使用Mimics 10.01软件进行三维重建,测量上颌骨及其周围骨缝标志点,使用独立样本t检验、双因素方差分析、Pearson相关性分析和回归分析进行统计学分析。结果: 除2例患者未完成复诊随访外,其余34例患者均完成治疗。与单次扩弓组相比,反复扩缩组患者治疗后上颌及周围骨缝标志点矢状前移量更大,颧颞缝、颧颌缝及颧额缝标志点矢状向分别前移1.21 mm、2.20 mm及1.43 mm,组间差异均有统计学意义(P<0.05)。除颧颞缝外,其余骨缝标志点矢状向前移量不受颧颌缝成熟度影响(P>0.05)。反复扩缩组治疗后,颧颌缝标志点和A点矢状向前移量之间相关性较强(P<0.01),回归分析R2=42.5%。结论: 与上颌单次快速扩弓相比,上颌反复快速扩缩前方牵引对于早期治疗上颌后缩可能效果更佳;上颌反复快速扩缩前方牵引后,颧颌缝作为上颌矫形力作用的主要骨缝之一,其矢状向前移量与上齿槽座点的前移量相关性较强。

关键词: 错牙合, 安氏Ⅲ类, 上颌骨, 腭扩张术, 颅缝, 锥形束CT

Abstract:

Objective: To assess three-dimensional (3D) changes of circummaxillary sutures following maxillary protraction with alternate rapid palatal expansions and constrictions (RPE/C) facemask protocol in maxillary retrusive children, and to investigate the relationship between the changes of circum-maxillary sutures and zygomaticomaxillary suture (ZMS) maturation, and to explore the factors of maxilla forward movement with RPE/C and facemask. Methods: In the study (clinical trial registration No: ChiCTR2000034909), 36 maxillary retrusive patients were recruited and block randomized to either the rapid palatal expansion (RPE) group or the RPE/C group. Patients aged 7 to 13 years, Class Ⅲ malocclusion, anterior crossbite, ANB less than 0°, Wits appraisal less than -2 mm, and A-Np less than 0 mm were included in the study. The RPE group received rapid palatal expansion, whereas the RPE/C group received alternate rapid palatal expansions and constrictions, and both with facemask protraction. Head orientations of cone-beam computed tomography (CBCT) images were implemented by Dolphin 11.7. 3D measurements of circummaxillary sutures on CBCT images were evaluated using Mimics 10.01 before (T0) and after treatment (T1). The changes were analyzed with independent t test, two-way ANOVA, Pearson correlation and regression analysis. Results: Two subjects in the RPE/C group were lost to follow-up. A total of 34 patients reached the completion criteria and were analyzed. Compared with the RPE group, sagittal changes of circummaxillary sutures were significantly increased in the RPE/C group with 1.21 mm advancement of zygomaticotemporal suture, 2.20 mm of ZMS, 1.43 mm of zygoma-ticofrontal suture (P<0.05, respectively). Except for the zygomaticotemporal suture, the rest forward sagittal changes of other circummaxillary sutures showed no major difference in terms of the ZMS maturation. The Spearman’s correlation in RPE/C indicated a strong positive correlation of sagittal changes between ZMS and point A (P<0.01) with a regression analysis R 2=42.5%. Conclusion: RPE/C might be more effective on the treatment of maxillary retrusive children. As one of the major mechanical loading sutures during orthopedic therapy, ZMS showed a strong positive correlation with point A on sagittal changes.

Key words: Malocclusion, angle class Ⅲ, Maxilla, Palatal expansion technique, Cranial sutures, Cone-beam computed tomography

中图分类号: 

  • R783.5

图1

影像测量标志点"

图2

CONSORT流程图"

表1

单次扩弓组和反复扩缩组患者基本情况和基线资料比较"

Items RPE group RPE/C group P value
Gender (female/male) 11/7 10/6 0.934
Zygomaticomaxillary suture maturational stages (B/C) 9/9 8/8 >0.999
Age/years, x -±s 9.80±1.31 10.27±1.56 0.342
A-CRP/mm, x -±s 75.30±4.00 76.99±4.64 0.264
A-HRP/mm, x -±s -27.22±2.51 -27.15±3.36 0.943
ZTM-CRP/mm, x -±s 41.31±2.16 41.49±2.64 0.827
ZTM-HRP/mm, x -±s -2.83±1.23 -2.16±1.89 0.237
ZTM width/mm, x -±s 109.84±6.11 109.83±4.57 0.995
ZMM-CRP/mm, x -±s 64.09±2.89 64.65±3.79 0.625
ZMM-HRP/mm, x -±s -9.76±1.59 -9.24±1.89 0.394
ZMM width/mm, x -±s 67.05±3.81 68.04±3.60 0.444
ZFM-CRP/mm, x -±s 62.20±3.15 62.46±3.00 0.804
ZFM-HRP/mm, x -±s 23.12±1.93 23.47±2.22 0.628
ZFM width/mm, x -±s 93.28±5.25 92.81±3.96 0.770
Protraction time/month, x -±s 8.84±4.19 8.45±2.76 0.750
Total treatment time/month, x -±s 9.57±4.17 10.95±2.82 0.262

表2

单次扩弓组和反复扩缩组患者治疗前后三维方向变化的比较"

Items RPE group/mm, x -±s RPE/C group/mm, x -±s Net differences (95%CI) P value
Sagittal
A-CRP 2.16±1.27 3.06±1.29 -0.91 (-1.80, -0.01) 0.047
ZTM-CRP 0.52±1.10 1.21±0.53 -0.69 (-1.31, -0.08) 0.029
ZMM-CRP 1.53±0.78 2.20±0.72 -0.67 (-1.20, -0.14) 0.014
ZFM-CRP 0.36±1.08 1.43±1.00 -1.07 (-1.80, -0.34) 0.006
Vertical
A-HRP -0.47±1.52 -1.20±2.03 0.73 (-0.51, 1.98) 0.239
ZTM-HRP -0.01±1.00 -0.48±0.98 0.47 (-0.23, 1.16) 0.183
ZMM-HRP 0.13±1.18 -0.53±1.58 0.66 (-0.31, 1.62) 0.175
ZFM-HRP 0.58±1.50 0.01±1.42 0.57 (-0.46, 1.59) 0.267
Transverse
ZTM width 1.74±1.27 1.86±1.22 -0.12 (-0.99, 0.75) 0.784
ZMM width 2.45±0.83 2.98±1.29 -0.53 (-1.30, 0.25) 0.177
ZFM width 1.69±0.92 1.52±0.78 0.16 (-0.44, 0.76) 0.590

表3

颧颌缝成熟度B级和C级治疗前后三维方向变化的比较"

Items Stage B/mm, x -±s Stage C/mm, x -±s Net differences (95%CI) P value
Sagittal
A-CRP 2.52±1.26 2.65±1.45 -0.13 (-1.08, 0.82) 0.783
ZTM-CRP 1.16±0.97 0.53±0.80 0.63 (0.00, 1.25) 0.049
ZMM-CRP 1.73±0.70 1.97±0.92 -0.24 (-0.81, 0.33) 0.398
ZFM-CRP 0.59±1.11 1.13±1.18 -0.54 (-1.34, 0.26) 0.180
Vertical
A-HRP -0.91±1.89 -0.72±1.74 -0.19 (-1.46, 1.08) 0.764
ZTM-HRP -0.11±1.15 -0.35±0.86 0.24 (-0.47, 0.95) 0.502
ZMM-HRP -0.01±1.45 -0.36±1.37 0.35 (-0.64, 1.33) 0.477
ZFM-HRP 0.56±1.78 0.05±1.08 0.51 (-0.52, 1.53) 0.322
Transverse
ZTM width 1.49±1.14 2.11±1.26 -0.62 (-1.46, 0.22) 0.143
ZMM width 2.74±1.11 2.65±1.10 0.09 (-0.68, 0.86) 0.813
ZFM width 1.55±1.00 1.67±0.69 -0.12 (-0.72, 0.49) 0.699

表4

不同治疗方法和颧颌缝成熟度对于标志点三维向变化影响的双因素方差分析"

Source of variation Sum of squares Mean square F value P value
A-CRP Treatment 6.97 6.97 4.28 0.047
ZMS stage 0.23 0.23 0.14 0.709
Treatment×ZMS stage 3.15 3.15 1.94 0.174
ZTM-CRP Treatment 4.06 4.06 6.30 0.018
ZMS stage 3.02 3.02 4.68 0.039
Treatment×ZMS stage 2.08 2.08 3.22 0.083
ZMM-CRP Treatment 3.82 3.82 6.73 0.015
ZMS stage 0.56 0.56 0.98 0.330
Treatment×ZMS stage 0.63 0.63 1.11 0.302
ZFM-CRP Treatment 9.64 9.64 8.94 0.006
ZMS stage 2.49 2.49 2.31 0.139
Treatment×ZMS stage 0.03 0.03 0.03 0.871
A-HRP Treatment 4.56 4.56 1.37 0.251
ZMS stage 0.37 0.37 0.11 0.742
Treatment×ZMS stage 0.99 0.99 0.30 0.590
ZTM-HRP Treatment 1.84 1.84 1.77 0.194
ZMS stage 0.48 0.48 0.46 0.502
Treatment×ZMS stage 0.00 0.00 0.00 0.952
ZMM-HRP Treatment 3.65 3.65 1.85 0.184
ZMS stage 0.93 0.93 0.47 0.497
Treatment×ZMS stage 0.64 0.64 0.32 0.574
ZFM-HRP Treatment 2.73 2.73 1.28 0.266
ZMS stage 1.92 1.92 0.90 0.350
Treatment×ZMS stage 2.44 2.44 1.15 0.293
ZTM width Treatment 0.12 0.12 0.08 0.783
ZMS stage 3.42 3.42 2.25 0.144
Treatment×ZMS stage 0.60 0.60 0.40 0.533
ZMM width Treatment 2.34 2.34 1.97 0.171
ZMS stage 0.11 0.11 0.09 0.766
Treatment×ZMS stage 1.14 1.14 0.96 0.335
ZFM width Treatment 0.22 0.22 0.29 0.592
ZMS stage 0.16 0.16 0.21 0.649
Treatment×ZMS stage 1.11 1.11 1.49 0.232

表5

反复扩缩组骨缝标志点和A点治疗前后矢状向变化量的相关性分析"

Items Pearson correlation coefficient of A-CRP P
ZTM-CRP 0.026 0.924
ZMM-CRP 0.652 0.006
ZFM-CRP 0.083 0.761
[1] 任超超, 白玉兴. 上颌前方牵引的疗效及其长期稳定性[J]. 中华口腔医学杂志, 2018, 53(10):649-652.
[2] Wells AP, Sarver DM, Proffit WR. Long-term efficacy of reverse pull headgear therapy[J]. Angle Orthod, 2006, 76(6):915-922.
doi: 10.2319/091605-328
[3] Liou EJ, Tsai WC. A new protocol for maxillary protraction in cleft patients: Repetitive weekly protocol of alternate rapid maxillary expansions and constrictions[J]. Cleft Palate Craniofac J, 2005, 42(2):121-127.
doi: 10.1597/03-107.1
[4] Liu Y, Hou R, Jin H, et al. Relative effectiveness of facemask therapy with alternate maxillary expansion and constriction in the early treatment of class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 159(3):321-332.
doi: 10.1016/j.ajodo.2019.12.028
[5] Almuzian M, McConnell E, Darendeliler MA, et al. The effectiveness of alternating rapid maxillary expansion and constriction combined with maxillary protraction in the treatment of patients with a class Ⅲ malocclusion: A systematic review and meta-analysis[J]. J Orthod, 2018, 45(4):250-259.
doi: 10.1080/14653125.2018.1518187
[6] 王怡然, 周彦恒, 王雪东, 等. 上颌反复扩缩前方牵引三维变化的锥形束CT分析[J]. 北京大学学报(医学版), 2018, 50(4):685-693.
[7] Liu W, Zhou Y, Wang X, et al. Effect of maxillary protraction with alternating rapid palatal expansion and constriction vs expansion alone in maxillary retrusive patients: A single-center, randomized controlled trial[J]. Am J Orthod Dentofacial Orthop, 2015, 148(4):641-651.
doi: 10.1016/j.ajodo.2015.04.038
[8] Parayaruthottam P, Antony V, Francis PG, et al. A retrospective evaluation of conventional rapid maxillary expansion versus alternate rapid maxillary expansion and constriction protocol combined with protraction headgear in the management of developing skeletal class Ⅲ malocclusion[J]. J Int Soc Prev Community Dent, 2018, 8(4):320-326.
doi: 10.4103/jispcd.JISPCD_66_18 pmid: 30123764
[9] 熊再道, 柯杰, 赵桂芝, 等. 两种扩弓方式对骨性Ⅲ类错牙合前方牵引效果的影响[J]. 中华口腔医学研究杂志: 电子版, 2017, 11(3):169-173.
[10] Buyukcavus MH, Kale B, Aydemir B. Comparison of treatment effects of different maxillary protraction methods in skeletal class Ⅲ patients[J]. Orthod Craniofac Res, 2020, 23(4):445-454.
doi: 10.1111/ocr.v23.4
[11] Zhao T, Hua F, He H. Alternate rapid maxillary expansion and constriction (Alt-RAMEC) may be more effective than rapid maxillary expansion alone for protraction facial mask treatment[J]. J Evid Based Dent Pract, 2020, 20(2):101408.
doi: 10.1016/j.jebdp.2020.101408
[12] Wu Z, Zhang X, Li Z, et al. A Bayesian network meta-analysis of orthopaedic treatment in class Ⅲ malocclusion: Maxillary protraction with skeletal anchorage or a rapid maxillary expander[J]. Orthod Craniofac Res, 2020, 23(1):1-15.
[13] Wang YC, Chang PM, Liou EJ. Opening of circumaxillary sutures by alternate rapid maxillary expansions and constrictions[J]. Angle Orthod, 2009, 79(2):230-234.
doi: 10.2319/031208-141.1
[14] Nanda R, Hickory W. Zygomaticomaxillary suture adaptations incident to anteriorly-directed forces in rhesus monkeys[J]. Angle Orthod, 1984, 54(3):199-210.
pmid: 6592992
[15] Zhao N, Xu Y, Chen Y, et al. Effects of class Ⅲ magnetic orthopedic forces on the craniofacial sutures of rhesus monkey[J]. Am J Orthod Dentofacial Orthop, 2008, 133(3):401-409.
doi: 10.1016/j.ajodo.2006.04.035
[16] Angelieri F, Franchi L, Cevidanes LHS, et al. Zygomaticomaxillary suture maturation: A predictor of maxillary protraction? Part Ⅰ: A classification method[J]. Orthod Craniofac Res, 2017, 20(2):85-94.
doi: 10.1111/ocr.12143 pmid: 28414869
[17] Angelieri F, Ruellas AC, Yatabe MS, et al. Zygomaticomaxillary suture maturation: Part Ⅱ: The influence of sutural maturation on the response to maxillary protraction[J]. Orthod Craniofac Res, 2017, 20(3):152-163.
doi: 10.1111/ocr.12191 pmid: 28660731
[18] Chung CH, Hufham DC. A corrected cephalometric tracing technique for diagnosis of anterior crossbite with functional shift[J]. J Clin Orthod, 2001, 35(8):500-504.
[19] Yilmaz BS, Kucukkeles N. Skeletal, soft tissue, and airway changes following the alternate maxillary expansions and constrictions protocol[J]. Angle Orthod, 2014, 84(5):868-877.
doi: 10.2319/092713-705.1 pmid: 24621102
[20] Gateno J, Xia JJ, Teichgraeber JF. New 3-dimensional cephalometric analysis for orthognathic surgery[J]. J Oral Maxillofac Surg, 2011, 69(3):606-622.
doi: 10.1016/j.joms.2010.09.010
[21] Kanomi R, Deguchi T, Kakuno E, et al. CBCT of skeletal changes following rapid maxillary expansion to increase arch-length with a development-dependent bonded or banded appliance[J]. Angle Orthod, 2013, 83(5):851-857.
doi: 10.2319/082012-669.1 pmid: 23488528
[22] Herring SW. Mechanical influences on suture development and patency[J]. Front Oral Biol, 2008, 12:41-56.
doi: 10.1159/000115031 pmid: 18391494
[23] 李鑫, 李江, 黄诗言, 等. 五种腭中缝扩展技术的临床应用[J]. 临床口腔医学杂志, 2019, 35(12):757-759.
[24] Almuzian M, Almukhtar A, Ulhaq A, et al. 3D effects of a bone-anchored intra-oral protraction in treating class Ⅲ growing patient: A pilot study[J]. Prog Orthod, 2019, 20(1):37.
doi: 10.1186/s40510-019-0290-0
[25] Liang S, Wang F, Chang Q, et al. Three-dimensional comparative evaluation of customized bone-anchored vs tooth-borne maxillary protraction in patients with skeletal class Ⅲ malocclusion[J]. Am J Orthod Dentofacial Orthop, 2021, 160(3):374-384.
doi: 10.1016/j.ajodo.2020.04.034
[26] Miranda F, Cunha Bastos JCD Magno Dos Santos A, et al. Dentoskeletal comparison of miniscrew-anchored maxillary protraction with hybrid and conventional hyrax expanders: A randomized clinical trial[J]. Am J Orthod Dentofacial Orthop, 2021, 160(6):774-783.
doi: 10.1016/j.ajodo.2021.02.017
[27] Scarfe WC, Azevedo B, Toghyani S, et al. Cone beam computed tomographic imaging in orthodontics[J]. Aust Dent J, 2017, 62(Suppl 1):33-50.
doi: 10.1111/adj.2017.62.issue-S1
[28] 高璐, 谷岩. 中国1076名儿童及青年腭中缝影像学分期与其颈椎骨龄分期的相关性研究[J]. 中华口腔医学杂志, 2021, 56(3):251-255.
[29] Onem Ozbilen E, Yilmaz HN, Kucukkeles N. Comparison of the effects of rapid maxillary expansion and alternate rapid maxillary expansion and constriction protocols followed by facemask therapy[J]. Korean J Orthod, 2019, 49(1):49-58.
doi: 10.4041/kjod.2019.49.1.49 pmid: 30603625
[30] Fischer B, Masucci C, Ruellas A, et al. Three-dimensional evaluation of the maxillary effects of two orthopaedic protocols for the treatment of class Ⅲ malocclusion: A prospective study[J]. Orthod Craniofac Res, 2018, 21(4):248-257.
doi: 10.1111/ocr.2018.21.issue-4
[31] Canturk BH, Celikoglu M. Comparison of the effects of face mask treatment started simultaneously and after the completion of the alternate rapid maxillary expansion and constriction procedure[J]. Angle Orthod, 2015, 85(2):284-291.
doi: 10.2319/031114-176.1 pmid: 25017013
[32] Özbilen EÖ, Yılmaz HN, Acar YB. Does Alt-RAMEC protocol and facemask treatment affect dentoalveolar structures?[J]. Angle Orthod, 2021, 91(5):626-633.
doi: 10.2319/111620-940.1 pmid: 33843979
[33] Gautam P, Valiathan A, Adhikari R. Maxillary protraction with and without maxillary expansion: A finite element analysis of sutural stresses[J]. Am J Orthod Dentofacial Orthop, 2009, 136(3):361-366.
doi: 10.1016/j.ajodo.2008.02.021
[34] Han X, Lu H, Li S, et al. Cell morphologic changes and PCNA expression within craniofacial sutures during monkey class Ⅲ treatment[J]. Orthod Craniofac Res, 2016, 19(4):181-189.
doi: 10.1111/ocr.12127 pmid: 27405789
[1] 孟圆,张丽琪,赵雅宁,柳登高,张祖燕,高岩. 67例上颌根尖周囊肿的三维影像特点分析[J]. 北京大学学报(医学版), 2021, 53(2): 396-401.
[2] 康一帆,单小峰,张雷,蔡志刚. 游离腓骨瓣修复重建上颌骨术后腓骨瓣位置变化[J]. 北京大学学报(医学版), 2020, 52(5): 938-942.
[3] 王鹏,李大军,刘建彰. 上颌前牙宽度、前牙弓周长与前牙弓深度的相关性研究[J]. 北京大学学报(医学版), 2020, 52(1): 124-128.
[4] 毛铭馨,徐莉,靖无迪,徐筱,侯建霞,李小彤,王晓霞. 骨性安氏Ⅲ类错牙合畸形患者前牙唇侧牙槽嵴顶位置及相关因素分析[J]. 北京大学学报(医学版), 2020, 52(1): 77-82.
[5] 曹畅,王菲,王恩博,刘宇. β-磷酸三钙用于下颌第三磨牙拔除术后骨缺损修复的自身对照研究[J]. 北京大学学报(医学版), 2020, 52(1): 97-102.
[6] 杜仁杰,焦剑,周彦恒,施捷. 侵袭性牙周炎患者正畸前后的咬合变化[J]. 北京大学学报(医学版), 2019, 51(5): 919-924.
[7] 王秀婧,张怡美,周彦恒. 骨性Ⅲ类错牙合畸形患者正畸-正颌联合治疗的稳定性[J]. 北京大学学报(医学版), 2019, 51(1): 86-92.
[8] 谢晓艳,贾淑梅,孙志辉,张祖燕. 分辨率设置与锥形束CT检测牙根外吸收的可靠性[J]. 北京大学学报(医学版), 2019, 51(1): 75-79.
[9] 王怡然,周彦恒,王雪东,魏松,刘伟涛. 上颌反复扩缩前方牵引三维变化的锥形束CT分析[J]. 北京大学学报(医学版), 2018, 50(4): 685-693.
[10] 马静,江久汇. 骨性Ⅱ类和Ⅲ类高角错牙合患者下切牙区的牙槽骨形态分析[J]. 北京大学学报(医学版), 2018, 50(1): 98-103.
[11] 徐筱,徐莉,江久汇,吴佳琪,李小彤,靖无迪. 锥形束CT评判安氏Ⅲ类错牙合上前牙骨开裂与骨开窗的准确性分析[J]. 北京大学学报(医学版), 2018, 50(1): 104-109.
[12] 孙乾,章文博,高敏,于森,毛驰,郭传瑸,俞光岩,彭歆. cN0上颌恶性肿瘤颈淋巴结转移的临床分析[J]. 北京大学学报(医学版), 2017, 49(6): 1050-1054.
[13] 孟沛琦,郭玉兴. 双侧上颌骨二膦酸盐颌骨坏死1例报道[J]. 北京大学学报(医学版), 2017, 49(6): 1098-1101.
[14] 常大桐,周彦恒,刘伟涛. 上颌反复快速扩缩对上气道影响的锥束CT研究[J]. 北京大学学报(医学版), 2017, 49(4): 685-690.
[15] 赵一姣,刘怡,孙玉春,王勇. 一种基于曲率连续算法的冠、根三维数据融合方法[J]. 北京大学学报(医学版), 2017, 49(4): 719-723.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 张岩, 霍勇. 推动我国医疗急救体系建设:从急性心肌梗死救治开始[J]. 北京大学学报(医学版), 2014, 46(6): 829 -831 .
[2] 郭应禄. 夯实人才培养,实现我国泌尿外科奋斗目标[J]. 北京大学学报(医学版), 2021, 53(4): 633 -634 .
[3] 刘承,马潞林. 前入路机器人辅助前列腺根治性切除术中改善排尿控制的经验[J]. 北京大学学报(医学版), 2021, 53(4): 635 -639 .
[4] 于妍斐,何世明,吴宇财,熊盛炜,沈棋,李妍妍,杨风,何群,李学松. 延胡索酸水合酶缺陷型肾细胞癌的临床病理特征及预后[J]. 北京大学学报(医学版), 2021, 53(4): 640 -646 .
[5] 王立新, 许晓, 倪耀丰, 孙海涛, 余日月, 魏世成. 载药脂质体修饰的聚醚醚酮植入物的抑菌和骨整合性能[J]. 北京大学学报(医学版), 2021, 53(4): 758 -763 .
[6] 敖英芳. 我国运动医学发展与北京冬奥会和健康中国建设[J]. 北京大学学报(医学版), 2021, 53(5): 823 -827 .
[7] 蒋青,张雨. 新形势下运动损伤特点及细胞生物治疗的应用前景和挑战[J]. 北京大学学报(医学版), 2021, 53(5): 828 -831 .
[8] 王新宇,崔哲,和清源,邓湘宁,郭歌,冯新恒,冯杰莉. 斑点追踪技术评价中国优秀男子举重运动员心脏的改变[J]. 北京大学学报(医学版), 2021, 53(5): 832 -837 .
[9] 张学武. 痛风关节炎治疗中几个备受关注的问题[J]. 北京大学学报(医学版), 2021, 53(6): 1017 -1019 .
[10] 娄雪,廖莉,李兴珺,王楠,刘爽,崔若玫,徐健. 类风湿关节炎患者外周血TWEAK基因启动子区甲基化状态及其表达[J]. 北京大学学报(医学版), 2021, 53(6): 1020 -1025 .