北京大学学报(医学版) ›› 2025, Vol. 57 ›› Issue (5): 841-846. doi: 10.19723/j.issn.1671-167X.2025.05.005

• 工作综述 • 上一篇    下一篇

基于微环境和干细胞调控的牙周组织再生关键技术的建立与应用

马保金1,2, 李建华1,3, 桑元华4, 于洋1, 仇吉川4, 邵金龙1, 李凯3, 刘世岳1, 杜密1, 商玲玲1, 葛少华1,*()   

  1. 1. 山东大学口腔医学院·口腔医院牙周病科, 济南 250012
    2. 山东大学口腔医学院·口腔医院组织工程与再生研究室, 济南 250012
    3. 山东大学口腔医学院·口腔医院生物材料研究室, 山东省口腔疾病重点实验室, 口腔生物材料与组织再生山东省工程研究中心, 山东省口腔疾病临床医学研究中心, 济南 250012
    4. 山东大学晶体材料全国重点实验室, 济南 250100
  • 收稿日期:2025-08-06 出版日期:2025-10-18 发布日期:2025-08-13
  • 通讯作者: 葛少华
  • 基金资助:
    国家自然科学基金(82320108004); 国家自然科学基金(81873716); 国家自然科学基金(81670993); 国家自然科学基金(81901010); 国家自然科学基金(81901009); 国家自然科学基金(82471030); 国家自然科学基金(82470981); 国家(海外)优秀青年基金项目; 国家临床重点专科(牙周病学)建设项目; 山东省泰山学者工程项目(tstp20250510)

Establishment and application of key technologies for periodontal tissue regeneration based on microenvironment and stem cell regulation

Baojin MA1,2, Jianhua LI1,3, Yuanhua SANG4, Yang YU1, Jichuan QIU4, Jinlong SHAO1, Kai LI3, Shiyue LIU1, Mi DU1, Lingling SHANG1, Shaohua GE1,*()   

  1. 1. Department of Periodontology, School and Hospital of Stomatology, Shandong University, Jinan 250012, China
    2. Department of Tissue Engineering and Regeneration, School and Hospital of Stomatology, Shandong University, Jinan 250012, China
    3. Department of Biomaterials, School and Hospital of Stomatology, Shandong University & Shandong Key Laboratory of Oral Diseases & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan 250012, China
    4. State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
  • Received:2025-08-06 Online:2025-10-18 Published:2025-08-13
  • Contact: Shaohua GE
  • Supported by:
    the National Natural Science Foundation of China(82320108004); the National Natural Science Foundation of China(81873716); the National Natural Science Foundation of China(81670993); the National Natural Science Foundation of China(81901010); the National Natural Science Foundation of China(81901009); the National Natural Science Foundation of China(82471030); the National Natural Science Foundation of China(82470981); Excellent Young Scholars Fund (Overseas) of the National Natural Science Foundation of China; National Clinical Key Specialty (Periodontology) Construction Project; Construction Engineering Special Fund of "Taishan Scholars" of Shandong Province(tstp20250510)

RICH HTML

  

摘要: 牙周炎在我国患病率高达74.2%,是成人失牙的首位原因,严重影响着口腔健康和全身健康。牙周炎治疗和牙周组织再生是世界关注的难题,山东大学口腔医学院·口腔医院葛少华教授团队围绕“牙周炎症微环境重塑和组织修复再生优化”的关键科学问题,通过阐明牙周炎顽固存在机制、创制生物活性材料调控干细胞再生性能、构建系列引导组织再生膜以促进牙周组织修复,从而创立了牙周炎治疗技术体系,具体研究成果和进展包括:(1)阐明了牙周炎关键致病菌逃避抗菌自噬从而导致炎症损伤的机制,研发了智能抗菌水凝胶和纳米抗菌体系,创制了金属多酚网络微球胶囊,以重塑牙周炎症微环境;(2)解释了材料纳米结构和电活性界面调控干细胞的行为机制,研发了优化纳米结构和电活性生物材料,从而有效提升干细胞再生修复能力;(3)创建系列双相异质屏障膜,完善引导组织再生和原位组织工程技术,激发机体自身修复潜能,促进牙周组织结构再生和功能重建。本课题组研究成果创新了牙周组织再生基础理论,打破了国外产品技术壁垒和专利封锁,建立了牙周再生级联修复策略,提高了我国在牙周组织再生领域的核心竞争力。

关键词: 牙周炎, 微环境, 干细胞, 生物活性材料, 牙周组织再生

Abstract: The prevalence of periodontitis in China is as high as 74.2%, making it the leading cause of tooth loss in adults and severely impacting both oral and overall health. The treatment of periodontitis and periodontal tissue regeneration are global challenges of significant concern. GE Shaohua' s group at School and Hospital of Stomatology, Shandong University has focused on the key scientific issue of "remodeling the periodontal inflammatory microenvironment and optimizing tissue repair and regeneration". They have elucidated the mechanisms underlying the persistence of periodontitis, developed bioactive materials to enhance stem cell regenerative properties, and constructed a series of guided tissue regeneration barrier membranes to promote periodontal tissue repair, leading to the establishment of a comprehensive technology system for the treatment of periodontitis. Specific achievements and progress include: (1) Elucidating the mechanism by which key periodontal pathogens evade antimicrobial autophagy, leading to inflammatory damage; developing intelligent antimicrobial hydrogels and nanosystems, and creating metal-polyphenol network microsphere capsules to reshape the periodontal inflammatory microenvironment; (2) Explaining the mechanisms by which nanomaterial structures and electroactive interfaces regulate stem cell behavior, developing optimized nanostructures and electroactive biomaterials, thereby effectively enhancing the regenerative repair capabilities of stem cells; (3) Creating a series of biphasic heterogeneous barrier membranes, refining guided tissue regeneration and in situ tissue engineering techniques, stimulating the body' s intrinsic repair potential, and synergistically promoting the structural regeneration and functional reconstruction of periodontal tissues. The research outcomes of the group have innovated the fundamental theories of periodontal tissue regeneration, broken through foreign technological barriers and patent blockades, established a cascade repair strategy for periodontal regeneration, and enhanced China' s core competitiveness in the field of periodontal tissue regeneration.

Key words: Periodontitis, Microenvironment, Stem cells, Bioactive materials, Periodontal tissue regeneration

中图分类号: 

  • R781.4
1
GBD 2021 Oral Disorders Collaborators . Trends in the global, regional, and national burden of oral conditions from 1990 to 2021: A systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet, 2025, 405 (10482): 897- 910.

doi: 10.1016/S0140-6736(24)02811-3
2
Huang J , Brumell JH . Bacteria-autophagy interplay: A battle for survival[J]. Nat Rev Microbiol, 2014, 12 (2): 101- 114.

doi: 10.1038/nrmicro3160
3
Liu M , Shao J , Zhao Y , et al. Porphyromonas gingivalis evades immune clearance by regulating lysosome efflux[J]. J Dent Res, 2023, 102 (5): 555- 564.

doi: 10.1177/00220345221146097
4
Liu S , Wang YN , Ma B , et al. Gingipain-responsive thermosensitive hydrogel loaded with SDF-1 facilitates in situ periodontal tissue regeneration[J]. ACS Appl Mater Interfaces, 2021, 13 (31): 36880- 36893.

doi: 10.1021/acsami.1c08855
5
Liu S , Wang YN , Yu L , et al. Development of a thermosensitive hydrogel loaded with DTT and SDF-1 facilitating in situ periodontal bone regeneration[J]. Chem Eng J, 2022, 432, 134308.

doi: 10.1016/j.cej.2021.134308
6
Wang Z, Du J, Leng X, et al. Polyphenol-driven modular self-assembled nano-antibiotic for inflammation control via bacterial infection clearance and pyroptosis inhibition[J/OL]. Adv Funct Mater, 2025, 6(2025-06-23)[2025-07-01]. https://doi.org/10.1002/adfm.202510476.
7
Wang W , Li J , Liu H , et al. Advancing versatile ferroelectric materials toward biomedical applications[J]. Adv Sci, 2021, 8 (1): 2003074.

doi: 10.1002/advs.202003074
8
Liu X , Shen L , Xu W , et al. Low frequency hydromechanics-driven generation of superoxide radicals via optimized piezotronic effect for water disinfection[J]. Nano Energy, 2021, 88, 106290.

doi: 10.1016/j.nanoen.2021.106290
9
Li K , Xu W , Chen Y , et al. Piezoelectric nanostructured surface for ultrasound-driven immunoregulation to rescue titanium implant infection[J]. Adv Funct Mater, 2023, 33 (28): 2214522.

doi: 10.1002/adfm.202214522
10
Liu X , Xu W , Feng J , et al. Adoptive cell transfer of piezo-activated macrophage rescues immunosuppressed rodents from lifethreating bacterial infections[J]. Nat Commun, 2025, 16 (1): 1363.

doi: 10.1038/s41467-025-56460-2
11
Xu W , Yu Y , Li K , et al. Surface-confined piezocatalysis inspired by ROS generation of mitochondria respiratory chain for ultrasound-driven noninvasive elimination of implant infection[J]. ACS Nano, 2023, 17 (10): 9415- 9428.

doi: 10.1021/acsnano.3c01480
12
Liu X, Liang Y, Li Z, et al. Nano-toothbrush for noninvasive control of periodontitis[J/OL]. J Dent Res, 2025, 6(2025-06-26)[2025-07-06]. https://pubmed.ncbi.nlm.nih.gov/40574415.
13
Xie C , Zhang Q , Bianco A , et al. H2S-scavenging hydrogel alleviating mitochondria damage to control periodontitis[J]. J Dent Res, 2025, 104 (2): 172- 182.

doi: 10.1177/00220345241291540
14
Zhang K , Mao X , Zhao H , et al. Selenium-doped carbon dots inhibit ferroptosis by multi-hierarchy iron chelation and mitochondrial homeostasis regulation to control inflammation[J]. Chem Eng J, 2024, 499, 156544.

doi: 10.1016/j.cej.2024.156544
15
Shang L , Yan Y , Li Z , et al. Hydro-sensitive, in situ ultrafast physical self-gelatinizing, and red blood cells strengthened hemostatic adhesive powder with antibiosis and immunoregulation for wound repair[J]. Adv Sci (Weinh), 2024, 11 (4): e2306528.

doi: 10.1002/advs.202306528
16
Chen Y , Yang X , Li K , et al. Phenolic ligand-metal charge transfer induced copper nanozyme with reactive oxygen species-scavenging ability for chronic wound healing[J]. ACS Nano, 2024, 18 (9): 7024- 7036.

doi: 10.1021/acsnano.3c10376
17
Liu J , Shi Y , Zhao Y , et al. A multifunctional metal-phenolic nanocoating on bone implants for enhanced osseointegration via early immunomodulation[J]. Adv Sci (Weinh), 2024, 11 (18): e2307269.

doi: 10.1002/advs.202307269
18
Wang Y , Li Z , Yu R , et al. Metal-phenolic network biointerface-mediated cell regulation for bone tissue regeneration[J]. Mater Today Bio, 2024, 30, 101400.
19
Yang X , Shao J , Zhang Y , et al. Microenvironment-driven Fenton nanoreactor enabled by metal-phenolic encapsulation of calcium peroxide for effective control of dental caries[J]. Adv Healthc Mater, 2024, 13 (10): e2303466.

doi: 10.1002/adhm.202303466
20
Li L , Gao F , Zhang H , et al. A protective growth factor delivery strategy based on polyphenol-protein self-assembly to promote inflammatory bone regeneration[J]. Biomaterials, 2025, 320, 123272.

doi: 10.1016/j.biomaterials.2025.123272
21
Liu Z , Yu Y , Kang W , et al. Self-assembled terbium-amino acid nanoparticles as a model for terbium biosafety and bone repair abi-lity assessment[J]. Compos Part B Eng, 2022, 244, 110186.

doi: 10.1016/j.compositesb.2022.110186
22
Hao M , Zhang Z , Liu C , et al. Hydroxyapatite nanorods function as safe and effective growth factors regulating neural differentiation and neuron development[J]. Adv Mater, 2021, 33 (33): 2100895.

doi: 10.1002/adma.202100895
23
Yu S , Du J , Zhang Q , et al. Mitochondria-targeted polyphenol-cysteine nanoparticles regulating AMPK-mediated mitochondrial homeostasis for enhanced bone regeneration[J]. Adv Funct Mater, 2024, 34 (41): 2402463.

doi: 10.1002/adfm.202402463
24
Hao M , Zhang D , Wang W , et al. HAp thermosensitive nanohydrogel cavities act as brood pouches to incubate and control-release NSCs for rapid spinal cord injury therapy[J]. Adv Funct Mater, 2022, 32 (31): 2203492.

doi: 10.1002/adfm.202203492
25
Li X , Ma B , Li J , et al. A method to visually observe the degradation-diffusion-reconstruction behavior of hydroxyapatite in the bone repair process[J]. Acta Biomater, 2020, 101, 554- 564.

doi: 10.1016/j.actbio.2019.10.044
26
Han J , Li Z , Du J , et al. Natural collagen scaffold with intrinsic piezoelectricity for enhanced bone regeneration[J]. Mater Today Bio, 2025, 31, 101532.

doi: 10.1016/j.mtbio.2025.101532
27
Zhang Y , Wang X , Wang W , et al. Unlocking piezoelectric potential in collagen: Intrafibrillar mineralization matters[J]. ACS Nano, 2025, 19 (29): 26411- 26424.

doi: 10.1021/acsnano.5c02641
28
Wang W , Li K , Ma W , et al. Ultrasound-activated piezoelectric nanostickers for neural stem cell therapy of traumatic brain injury[J]. Nat Mater, 2025, 24 (7): 1137- 1150.

doi: 10.1038/s41563-025-02214-w
29
Wang L , Du J , Liu Q , et al. Wrapping stem cells with wireless electrical nanopatches for traumatic brain injury therapy[J]. Nat Commun, 2024, 15 (1): 7223.

doi: 10.1038/s41467-024-51098-y
30
Ma B , Han J , Zhang S , et al. Hydroxyapatite nanobelt/polylactic acid Janus membrane with osteoinduction/barrier dual functions for precise bone defect repair[J]. Acta Biomater, 2018, 71, 108- 117.

doi: 10.1016/j.actbio.2018.02.033
31
Li X , Wei L , Li J , et al. Multifunctional SDF-1-loaded hydroxyapatite/polylactic acid membranes promote cell recruitment, immunomodulation, angiogenesis, and osteogenesis for biomimetic bone regeneration[J]. Appl Mater Today, 2021, 22, 100942.

doi: 10.1016/j.apmt.2021.100942
32
Liu S , Yang H , Zhang L , et al. Multifunctional barrier membranes promote bone regeneration by scavenging H2O2, generating O2, eliminating inflammation, and regulating immune response[J]. Colloids Surf B Biointerfaces, 2023, 222, 113147.

doi: 10.1016/j.colsurfb.2023.113147
33
Zhang Y , Chen Y , Ding T , et al. Janus porous polylactic acid membranes with versatile metal-phenolic interface for biomimetic periodontal bone regeneration[J]. NPJ Regen Med, 2023, 8 (1): 28.

doi: 10.1038/s41536-023-00305-3
34
Zhang L , Li Z , Fu Y , et al. Phased ions-release bilayer-guided bone regeneration membrane with nanostructure-mediated antibacterial adhesion[J]. Small Struct, 2025, 6 (2): 2400408.

doi: 10.1002/sstr.202400408
35
Ding T , Kang W , Li J , et al. An in situ tissue engineering scaffold with growth factors combining angiogenesis and osteoimmunomodulatory functions for advanced periodontal bone regeneration[J]. J Nanobiotechnology, 2021, 19 (1): 247.

doi: 10.1186/s12951-021-00992-4
36
Ding T , Li J , Zhang X , et al. Super-assembled core/shell fibrous frameworks with dual growth factors for in situ cementum-ligament-bone complex regeneration[J]. Biomater Sci, 2020, 8 (9): 2459- 2471.

doi: 10.1039/D0BM00102C
37
Shang L , Liu Z , Ma B , et al. Dimethyloxallyl glycine/nanosilicates-loaded osteogenic/angiogenic difunctional fibrous structure for functional periodontal tissue regeneration[J]. Bioact Mater, 2020, 6 (4): 1175- 1188.
[1] 欧乾民, 李政诗, 牛露菡, 任倩慧, 刘欣雨, 毛学理, 施松涛. 口腔干细胞的生物学特性与转化研究[J]. 北京大学学报(医学版), 2025, 57(5): 827-835.
[2] 曹沛, 栾庆先. 牙周炎与全身系统性疾病的思考与探索[J]. 北京大学学报(医学版), 2025, 57(5): 852-858.
[3] 包振英, 王雅杰. 炎症指标和细胞因子联合检测在慢性牙周炎中的应用[J]. 北京大学学报(医学版), 2025, 57(4): 772-778.
[4] 盛春辉, 张晓, 吕珑薇, 周永胜. 人脂肪间充质干细胞外泌体对去势小鼠骨质疏松的预防[J]. 北京大学学报(医学版), 2025, 57(2): 217-226.
[5] 石宇彤, 危伊萍, 胡文杰, 徐涛, 张浩筠. 罹患重度牙周炎下颌磨牙拔牙微翻瓣牙槽嵴保存效果评价[J]. 北京大学学报(医学版), 2025, 57(1): 33-41.
[6] 王昕莹, 程雪原, 张勇, 李菲, 段晋瑜, 乔静. 浓缩生长因子与自固化磷酸钙人工骨联合治疗牙周骨下袋缺损的疗效:临床和影像学评价[J]. 北京大学学报(医学版), 2025, 57(1): 42-50.
[7] 李敬谦, 朱子璐, 焦剑, 施捷. 隐形矫治重度牙周炎患者前牙区病理性移位患牙的临床疗效[J]. 北京大学学报(医学版), 2025, 57(1): 51-56.
[8] 帅婷, 郭艳艳, 林春平, 侯晓玫, 金婵媛. 敲减NPTX1促进人骨髓间充质干细胞成骨分化[J]. 北京大学学报(医学版), 2025, 57(1): 7-12.
[9] 武志慧, 胡明智, 赵巧英, 吕凤凤, 张晶莹, 张伟, 王永福, 孙晓林, 王慧. miR-125b-5p修饰脐带间充质干细胞对系统性红斑狼疮的免疫调控机制[J]. 北京大学学报(医学版), 2024, 56(5): 860-867.
[10] 柴晓东,孙子文,李海爽,朱靓怡,刘小旦,刘延涛,裴斐,常青. 髓母细胞瘤分子亚型中CD8+T淋巴细胞浸润的临床病理特点[J]. 北京大学学报(医学版), 2024, 56(3): 512-518.
[11] 简远志,王菲,尹宁,周若宇,王军波. 基于胚胎干细胞模型的Cry1Ab蛋白发育毒性[J]. 北京大学学报(医学版), 2024, 56(2): 213-222.
[12] 胡玉如,刘娟,李文静,赵亦兵,李启强,路瑞芳,孟焕新. Ⅲ期或Ⅳ期牙周炎患者龈沟液中有机酸浓度与牙周炎的关系[J]. 北京大学学报(医学版), 2024, 56(2): 332-337.
[13] 张晗,秦亦瑄,韦帝远,韩劼. 牙周炎患者种植修复维护治疗依从性的影响因素[J]. 北京大学学报(医学版), 2024, 56(1): 39-44.
[14] 赵菡,卫彦,张学慧,杨小平,蔡晴,宁成云,徐明明,刘雯雯,黄颖,何颖,郭亚茹,江圣杰,白云洋,吴宇佳,郭雨思,郑晓娜,李文静,邓旭亮. 口腔硬组织修复材料仿生设计制备和临床转化[J]. 北京大学学报(医学版), 2024, 56(1): 4-8.
[15] 殳畅,韩烨,孙雨哲,杨再目,侯建霞. Ⅲ期牙周炎患者牙周基础治疗前后炎症性贫血相关指标的变化[J]. 北京大学学报(医学版), 2024, 56(1): 45-50.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!