北京大学学报(医学版) ›› 2016, Vol. 48 ›› Issue (5): 884-888. doi: 10.3969/j.issn.1671-167X.2016.05.025

• 论著 • 上一篇    下一篇

全口义齿牙列基托分体数字控制加工后装配粘接精度的定量评价

王函,吕培军△,王勇,孙玉春   

  1. (北京大学口腔医学院·口腔医院,口腔医学数字化研究中心,口腔修复教研室口腔数字化医疗技术和材料国家工程实验室口腔数字医学北京市重点实验室, 北京100081)
  • 出版日期:2016-10-18 发布日期:2016-10-18
  • 通讯作者: 吕培军 E-mail:kqlpj@bjmu.edu.cn
  • 基金资助:

    国家自然科学基金(81271181)、国家高技术研究发展计划(863计划, 2013AA040801)资助

Quantitative evaluation of fabricating complete denture by computer numerical control in manufacturing dentition and baseplate separately plus adhesive molding

WANG Han, LU Pei-jun△, WANG Yong, SUN Yu-chun   

  1. (Center of Digital Dentistry, Faculty of Prosthodontics, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100081, China)
  • Online:2016-10-18 Published:2016-10-18
  • Contact: LU Pei-jun E-mail:kqlpj@bjmu.edu.cn
  • Supported by:

    Supported by the National Natural Science Foundation of China (81271181) and the National High Technology Research and Development Program of China (863 Program, 2013AA040801)

摘要:

目的:定量评价全口义齿牙列基托分体数字控制加工后的装配粘接精度,为临床应用提供参考。方法:用Activity 880牙颌模型三维扫描仪获取标准无牙颌石膏模型及牙合托三维数据,用本课题组自主研发的全口义齿计算机辅助设计(computer aided design,CAD)软件设计上颌总义齿CAD数据Data1。用Imageware 10.0、13.2软件(西门子,德国)及Geomagic Studio软件将基托与牙列结合部设计为无倒凹固位钉形态,设定固位钉端面处基托与牙列间隙为0 mm,其余部分预留0.05 mm粘接剂间隙,得到牙列、基托CAD数据Data2和Data3。用Zenotec T1 5自由度切削机及其配套的聚甲基丙烯酸甲酯(polymethyl methacrylate,PMMA)可切削树脂盘分别加工牙列和基托,其中牙列分为双侧后牙区段和前牙区段3个部分进行加工,在基托对应区域就位后用沪鸽自凝树脂分别粘接。扫描获得义齿整体三维表面数据Data4,用多点对齐和注册器命令将Data2、Data3分别对齐于Data4获得Data5,提取出Data5中Data2、Data3结合部形态中原本设计牙合龈方向上间隙为0 mm的部分数据,用3D偏差分析工具检测该部分间隙量的大小,获得牙列、基托装配后的平均间隙量,定量评价装配粘接精度。结果:Data2和Data3的平均间隙量为:左后牙区段(0.44±0.04) mm,最大偏差值0.52 mm,最小偏差值0.29 mm;右后牙区段(0.52±0.07) mm,最大偏差值0.64 mm,最小偏差值0.28 mm;前牙区段(0.60±0.10) mm,最大偏差0.81 mm,最小偏差0.40 mm;牙列与基托整体平均粘接装配精度为(0.52±0.10) mm。结论:将全口义齿牙列基托结合部设计为无倒凹固位钉形态并将牙列分为3个区段时,可将分体数字控制加工的牙列与基托之间的装配粘接误差控制在0.5 mm量级,探索了全口义齿计算机数字控制加工路线,虽然精度在咬合方向上还有进一步改进的空间,但证明了拥有个性化咬合的全口义齿数字加工技术路线可行。

关键词: 义齿, 全口, 计算机辅助设计, 牙列, 义齿基托

Abstract:

Objective:To quantitatively evaluate the assembly precision of fabricating complete denture by computer numerical control (CNC) in manufacturing dentition and baseplate separately plus adhesive molding. Methods: The 3D surface data of a standard edentulous maxilla plaster cast model and the temporary base-plate were obtained using an Activity 880 3D scanner. The data (data1) of a complete denture were designed using a set of computer aided design (CAD) software developed by the research group of this study. The pins without undercut were designed as 3D shape of the joining area of the dentition and the baseplate by using the software of Imageware 13.2 and Geomagic Studio 2013. Zero in the top and 0.05 mm in the rest surfaces of the retention pins were set for adhesive clearance. Zenotec T1 (5-axis milling machine) was employed to manufacture polymethyl methacrylate (PMMA) dentition and baseplate. Double sides posterior and one anterior “union teeth” were got. The teeth were inserted into the retention pins in the baseplate and cemented with self-curing resin (Huge Dental Material Co., Ltd). The denture was scanned with the 3D scanner to obtain dataset Data4. Data2 and Data3 registration was set in Data4, Data2 and Data3 were united to gain Data 5. The adhesive clearance on the top of the retentional pins was measured, which was originally designed into 0 mm, and the assembly precision of dentition and baseplate obtained. Results: The average clearance measurements between the dentition and the baseplate: left molar teeth (0.44±0.04) mm, max 0.52 mm, min 0.29 mm; right molar teeth (0.52±0.07) mm, max 0.64 mm, min 0.28 mm; anterior teeth (0.60±0.10) mm, max 0.81 mm, min 0.40 mm; total average clearance (0.52±0.10) mm. Conclusion: The adhesive clearance can be controlled to the level of 0.5 mm when the joining part of the artificial teeth and the base was designed into the shape of retentional pins and the artificial dentition divided into 3 parts. We succeeded in using the CAD/ computer aided manufacturing (CAM) technology to fabricate the complete denture. Although the assembly precision of the dentition and the baseplate is not perfect, the results have proved that the technical routes are workable.

Key words: Denture, complete, Computer-aided design, Dentition, Denture bases

中图分类号: 

  • R783.6
[1] 展新新,曹露露,项东,汤皓,夏丹丹,林红. 成型方向对3D打印口腔义齿基托树脂材料物理性能及力学性能的影响[J]. 北京大学学报(医学版), 2024, 56(2): 345-351.
[2] 徐心雨,吴灵,宋凤岐,李自力,张益,刘筱菁. 基于下颌运动轨迹的正颌外科术中下颌骨髁突定位方法及初步精度验证[J]. 北京大学学报(医学版), 2024, 56(1): 57-65.
[3] 李穗,马雯洁,王时敏,丁茜,孙瑶,张磊. 上前牙种植单冠修复体切导的数字化设计正确度[J]. 北京大学学报(医学版), 2024, 56(1): 81-87.
[4] 周团锋,杨雪,王睿捷,程明轩,张华,韦金奇. 数字化制作简易口内哥特式弓在全口义齿修复正中关系确定中的应用[J]. 北京大学学报(医学版), 2023, 55(1): 101-107.
[5] 罗昊,田福聪,王晓燕. 不同椅旁可切削修复材料序列抛光时间及表面粗糙度与光泽度的比较[J]. 北京大学学报(医学版), 2022, 54(3): 565-571.
[6] 冯莎蔚,国慧,王勇,赵一姣,刘鹤. 乳牙数字化参考牙冠模型的初步构建[J]. 北京大学学报(医学版), 2022, 54(2): 327-334.
[7] 李怡,王丽瑜,刘晓强,周倜,吕季喆,谭建国. 不同材料及厚度椅旁CAD/CAM瓷贴面的边缘特征[J]. 北京大学学报(医学版), 2022, 54(1): 140-145.
[8] 邱淑婷,朱玉佳,王时敏,王飞龙,叶红强,赵一姣,刘云松,王勇,周永胜. 姿势微笑位口唇对称参考平面的数字化构建及初步应用验证[J]. 北京大学学报(医学版), 2022, 54(1): 193-199.
[9] 尹祯敏,王子轩,陈俊锴,孙玉春,刘云松,叶红强,周永胜. 可摘局部义齿适合性方法的评价[J]. 北京大学学报(医学版), 2021, 53(2): 406-412.
[10] 徐啸翔,曹烨,赵一姣,贾璐,谢秋菲. 数字化个齿托盘制取下颌全牙列全冠预备体印模的体外评价[J]. 北京大学学报(医学版), 2021, 53(1): 54-61.
[11] 岳兆国,张海东,杨静文,侯建霞. 数字化评估CAD/CAM个性化基台与成品基台影响粘接剂残留的体外研究[J]. 北京大学学报(医学版), 2021, 53(1): 69-75.
[12] 李峥,柳玉树,王时敏,张瑞,贾璐,叶红强,胡文杰,赵文艳,刘云松,周永胜. 数字化方法复制暂时修复体牙合面形态在重度磨耗病例中的应用[J]. 北京大学学报(医学版), 2021, 53(1): 62-68.
[13] 房硕博,杨广聚,康艳凤,孙玉春,谢秋菲. 数字化辅助确定再定位牙合垫颌位方法的探索和精度评价[J]. 北京大学学报(医学版), 2021, 53(1): 76-82.
[14] 郝柯屹,罗佳,邸萍,郭厚佐,沈惠丹,刘焱萍,张宇,林野. 三维图像融合技术评价上颌全牙列种植固定修复前后的鼻唇软组织形态变化[J]. 北京大学学报(医学版), 2020, 52(5): 924-930.
[15] 罗佳,张宇,崔宏燕,祝宁,沈惠丹,邸萍,林野. 锥度固位结合数字化技术在后牙连续多牙种植即刻修复中的应用[J]. 北京大学学报(医学版), 2020, 52(5): 964-970.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!