北京大学学报(医学版) ›› 2018, Vol. 50 ›› Issue (1): 117-122. doi: 10.3969/j.issn.1671-167X.2018.01.020

• 论著 • 上一篇    下一篇

选择性激光熔化种植体对早期骨矿化沉积率的影响

刘婧寅1*,陈飞2*#,葛严军2△,魏菱2,潘韶霞2,冯海兰2   

  1. (1. 北京大学口腔医学院·口腔医院, 第一门诊部修复科口腔数字化医疗技术和材料国家工程实验室口腔数字医学北京市重点实验室, 北京100034; 2. 北京大学口腔医学院·口腔医院修复科, 北京100081)
  • 出版日期:2018-02-18 发布日期:2018-02-18
  • 通讯作者: 葛严军 E-mail:yanjun_ge@163.com
  • 基金资助:
     国家自然科学基金(81400484)和北京大学口腔医院青年科研基金项目(Ys 020213)资助

Influence of implants prepared by selective laser melting on early bone healing

LIU Jingyin1*, CHEN Fei2*#, GE Yanjun2△, WEI Ling2, PAN Shaoxia2, FENG Hailan2   

  1. (1. Department of Prosthodontics, First Clinical Division, Peking University School and Hospital of Stomatology & National Engineering Laboratory for Digital and Material Technology of Stomatology & Beijing Key Laboratory of Digital Stomatology, Beijing 100034, China; 2. Department of Prosthodontics, Peking University School and Hospital of Stomatology, Beijing 100081, China)
  • Online:2018-02-18 Published:2018-02-18
  • Contact: GE Yan-jun E-mail:yanjun_ge@163.com
  • Supported by:
    Supported by the National Natural Science Foundation of China (81400484) and the Youth Foundation of Peking University School and Hospital of Stomatology (Ys 020213)

摘要: 目的:研究由选择性激光熔化(selective laser melting,SLM)技术制备的钛种植体的粗糙表面对种植体周围早期骨矿化沉积率的影响。方法:在两只成年雄性比格犬下颌骨愈合拔牙窝分别植入SLM种植体和大颗粒喷砂酸蚀(sandblasted, largegrit, acidetched, SLA)种植体共16颗,分为埋入愈合和穿龈愈合即刻负重,在植入后2、4、8周分别注射3种四环素类荧光标记物,用以标记和观察新骨。植入12周时处死两只比格犬,制作硬组织切片共16张,经甲苯胺蓝染色后在光学显微镜和激光扫描共聚焦荧光显微镜下观察标本,对比各组种植体周围的新骨形成情况并计算平均骨矿化沉积率。结果:SLM种植体在植入术后12周与骨组织之间形成了良好的骨结合,新生骨在其粗糙表面爬行生长并渗透于孔隙之间,SLM种植体的平均骨矿化沉积率明显高于SLA种植体(P<0.01)。结论:SLM法制备的钛种植体可以促进种植体周围早期骨整合,提高早期骨矿化速率。

关键词: 牙种植体, 选择性激光熔化, 骨生成, 矿化沉积率, 荧光染料

Abstract: Objective: To evaluate the influence of the rough surface of dental implants prepared by selective laser melting (SLM) on early bone healing around titanium implants. Methods: A total of sixteen titanium implants were involved in our research, of which eight implants were prepared by SLM (TIXOS-Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex) and the other eight were sandblasted, large-grit and acid-etched (SLA) implants (IMPLUS-Cylindrical, Leader-Novaxa, Milan, Italy; 3.3 mm×10 mm, internal hex). All of the dental implants were inserted into the healed extraction sockets of the mandible of two adult male Beagle dogs. Half of the dental implants were designed to be healed beneath the mucosa and the other half were intended to be healed transgingivally and were immediately loaded by acrylic resin bridge restoration. Three types of tetracycline fluorescent labels, namely calcein blue, alizarin complexone and calcein, were administered into the veins of the Beagle dogs 2, 4, and 8 weeks after implant placement respectively for fluorescent evaluation of newly formed bone peri-implant. Both Beagle dogs were euthanized 12 weeks after implant insertion and the mandible block specimens containing the titanium implants and surrounding bone and soft tissue of each dog were carefully sectioned and dissected. A total of 16 hard tissue slices were obtained and stained with toluidine blue for microscopic examination and histomorphometric measurements. Histological observation was made for each slice under light microscope and laser scanning confocal microscope (LSCM). Comparison on new bone formation around titanium implants of each group was made and mineral apposition rate (MAR) was calculated for each group. Results: Dental implants prepared by selective laser melting had achieved satisfying osseointegration to surrounding bone tissue after the healing period of 12 weeks. Newly formed bone tissue was observed creeping on the highly porous surface of the SLM implant and growing into the pores of surface structure. Higher MAR values were shown for SLM implants compared with SLA implants (P<0.01). Conclusion: Dental implants prepared by selective laser melting could promote early bone healing and improve mineral apposition rate.

Key words: Dental implants, Selective laser melting (SLM), Osteogenesis, Mineral apposition rate (MAR), Fluorescent dyes

中图分类号: 

  • R783.1
[1] 王聪伟,高敏,于尧,章文博,彭歆. 游离腓骨瓣修复下颌骨缺损术后义齿修复的临床分析[J]. 北京大学学报(医学版), 2024, 56(1): 66-73.
[2] 丁茜,李文锦,孙丰博,谷景华,林元华,张磊. 表面处理对氧化钇和氧化镁稳定的氧化锆种植体晶相及断裂强度的影响[J]. 北京大学学报(医学版), 2023, 55(4): 721-728.
[3] 孙菲,刘建,李思琪,危伊萍,胡文杰,王翠. 种植体黏膜下微生物在健康种植体和种植体周炎中的构成与差异:一项横断面研究[J]. 北京大学学报(医学版), 2023, 55(1): 30-37.
[4] 马珂楠,陈虎,沈妍汝,周永胜,王勇,孙玉春. 选择性激光熔化打印可摘局部义齿圆环形卡环固位力的有限元分析[J]. 北京大学学报(医学版), 2022, 54(1): 105-112.
[5] 杜文瑜,杨静文,姜婷. 甲磺酸去铁胺促进大鼠颅骨临界骨缺损血管化骨再生的早期连续观察[J]. 北京大学学报(医学版), 2021, 53(6): 1171-1177.
[6] 梁峰,吴敏节,邹立东. 后牙区单牙种植修复5年后的临床修复疗效观察[J]. 北京大学学报(医学版), 2021, 53(5): 970-976.
[7] 张胜男,安娜,欧阳翔英,刘颖君,王雪奎. 生长停滞特异性蛋白6在人牙周膜细胞迁移及成骨分化中的作用[J]. 北京大学学报(医学版), 2021, 53(1): 9-15.
[8] 释栋,曹婕,戴世爱,孟焕新. 植体周炎再生治疗短期疗效观察[J]. 北京大学学报(医学版), 2020, 52(1): 58-63.
[9] 林春平,卢松鹤,朱浚鑫,胡洪成,岳兆国,唐志辉. 个性化根形种植体的螺纹形态对周围牙槽骨应力分布影响的三维有限元分析[J]. 北京大学学报(医学版), 2019, 51(6): 1130-1137.
[10] 刘潇倩,陈秋雯,冯海兰,王兵,屈健,孙振,衡墨迪,潘韶霞. 无牙颌患者locator附着体种植覆盖义齿修复后口腔卫生维护的纵向研究[J]. 北京大学学报(医学版), 2019, 51(1): 136-144.
[11] 隋华欣,吕培军,王勇,冯驭驰. 低能量激光照射对人脂肪来源干细胞/海藻酸钠/明胶三维生物打印体成骨能力的影响[J]. 北京大学学报(医学版), 2018, 50(5): 868-875.
[12] 吴敏节,邹立东,梁峰. 上前牙即刻种植即刻修复负载3年后软、硬组织变化的临床观察[J]. 北京大学学报(医学版), 2018, 50(4): 694-699.
[13] 梁乃文,石磊,黄颖,邓旭亮. 不同形貌纯钛表面对人脐静脉内皮细胞生物学行为的影响[J]. 北京大学学报(医学版), 2017, 49(1): 43-048.
[14] 陈飞,潘韶霞,冯海兰. 转化生长因子β1和血管内皮生长因子在浓缩生长因子各层中的分布及含量特点[J]. 北京大学学报(医学版), 2016, 48(5): 860-865.
[15] 秦雪嫣,赵华翔,张倩,陈峰,林久祥. NELL-1: 高效特异的新型生长因子[J]. 北京大学学报(医学版), 2016, 48(2): 380-383.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!