北京大学学报(医学版) ›› 2023, Vol. 55 ›› Issue (3): 415-420. doi: 10.19723/j.issn.1671-167X.2023.03.005

• 论著 • 上一篇    下一篇

不同生长模式与7~17岁儿童青少年代谢综合征的关系

崔孟杰1,马奇1,陈曼曼1,马涛1,王鑫鑫2,刘婕妤1,张奕1,陈力1,蒋家诺1,袁雯1,郭桐君1,董彦会1,马军1,星一1,*()   

  1. 1. 北京大学公共卫生学院儿童青少年卫生研究所,北京 100191
    2. 宁夏医科大学公共卫生与管理学院流行病与卫生统计学系,银川 750004
  • 收稿日期:2023-03-02 出版日期:2023-06-18 发布日期:2023-06-12
  • 通讯作者: 星一 E-mail:cyrss@126.com
  • 基金资助:
    国家自然科学基金(91846302);科技部重点研发项目(2016YFA0501604)

Association between different growth patterns and metabolic syndrome in children and adolescents aged 7 to 17 years

Meng-jie CUI1,Qi MA1,Man-man CHEN1,Tao MA1,Xin-xin WANG2,Jie-yu LIU1,Yi ZHANG1,Li CHEN1,Jia-nuo JIANG1,Wen YUAN1,Tong-jun GUO1,Yan-hui DONG1,Jun MA1,Yi XING1,*()   

  1. 1. Institute of Child and Adolescent Health, Peking University School of Public Health, Beijing 100191, China
    2. Department of Epidemiology and Health Statistics, School of Public Health and Management, Ningxia Medical University, Yinchuan 750004, China
  • Received:2023-03-02 Online:2023-06-18 Published:2023-06-12
  • Contact: Yi XING E-mail:cyrss@126.com
  • Supported by:
    the National Natural Science Foundation of China(91846302);the Key R & D Projects of the Ministry of Science and Technology(2016YFA0501604)

RICH HTML

  

摘要:

目的: 分析不同生长模式与7~17岁儿童青少年代谢综合征之间的关系,为我国儿童青少年代谢综合征的预防与控制提供依据。方法: 采用横断面研究设计,利用2012年卫生公益性行业科研专项“学生重大疾病防控技术和相关标准研制及应用”项目收集的数据,选择其中体格测量及血生化指标数据完整的10 176名7~17岁的中小学生作为研究对象。使用二元Logistic回归模型分析不同生长模式与7~17岁儿童青少年代谢综合征的关系。结果: 儿童青少年代谢综合征患病率为6.56%,其中男生为7.18%,女生为5.97%。迟缓性生长组发生代谢综合征的风险是正常性生长组的1.42倍(95%CI:1.19~1.69),追赶性生长组发生代谢综合征的风险是正常性生长组的0.66倍(95%CI:0.53~0.82);经性别、年龄等因素校正后,迟缓性生长组发生代谢综合征的风险为正常性生长组的1.25倍(95%CI:1.02~1.52),追赶性生长组发生代谢综合征的风险与正常性生长组的差异无统计学意义(OR=0.79, 95%CI:0.62~1.01);分层分析显示,不同生长模式与代谢综合征的关联在7~12岁年龄组、城市和汉族学生群体中具有统计学意义。结论: 不同生长模式与儿童青少年代谢综合征之间存在关联,迟缓性生长儿童青少年发生代谢综合征的风险高于正常性生长组,提示应当注意儿童青少年的生长发育,及时纠正其迟缓性生长,预防不良健康结局的发生。

关键词: 生长模式, 儿童, 青少年, 代谢综合征

Abstract:

Objective: To analyze the association between different growth patterns and metabolic syndrome in children and adolescents aged 7 to 17 years, and to provide suggestions for the prevention and control of metabolic syndrome in Chinese children and adolescents. Methods: Data were collected from the research project "Development and Application of Technology and Related Standards for Prevention and Control of Major Diseases among Students" of public health industry in 2012. This project is a cross-sectional study design. A total of 65 347 students from 93 primary and secondary schools in 7 provinces including Guangdong were selected by stratified cluster random sampling method. Given the budget, 25% of the students were randomly selected to collect blood samples. In this study, 10 176 primary and middle school students aged 7 to 17 years with complete physical measurements and blood biochemical indicators were selected as research objects. Chi-square test was used to compare the distribution differences of growth patterns under different demographic characteristics. Birth weight, waist circumference and blood biochemical indexes were expressed in the form of mean ± standard deviation, and the differences among different groups were compared by variance analysis. Binary Logistic regression model was used to analyze the relationship between different growth patterns and metabolic syndrome in children and adolescents aged 7 to 17 years. Results: The prevalence of metabolic syndrome in children and adolescents was 6.56%, 7.18% in boys and 5.97% in girls. The risk of metabolic syndrome was higher in the catch-down growth group than in the normal growth group (OR=1.417, 95%CI: 1.19-1.69), and lower in the catch-up growth group(OR=0.66, 95%CI: 0.53-0.82). After adjusting for gender, age and so on, the risk of developing metabolic syndrome in the catch-down growth group was higher than that in the normal growth group (OR=1.25, 95%CI: 1.02-1.52), but there was no significant difference between the catch-up growth group and the normal growth group (OR=0.79, 95%CI: 0.62-1.01). Stratified analysis showed that the association between different growth patterns and metabolic syndrome was statistically significant in the 7-12 years group, urban population, and Han Chinese student population. Conclusion: There is a correlation between different growth patterns and metabolic syndrome in children and adolescents. The risk of developing metabolic syndrome in children and adolescents with catch-down growth is higher than that in the normal growth group, which suggests that attention should be paid to the growth and development of children and adolescents, timely correction of delayed growth and prevention of adverse health outcomes.

Key words: Growth pattern, Children, Adolescents, Metabolic syndrome

中图分类号: 

  • R725.8

表1

不同人口统计学特征下的生长模式分布特点"

Demographic index Catch-down growth(n=3 101) Normal growth(n=4 233) Catch-up growth(n=2 842) Total P value
Gender,n(%) 0.970
  Male 1 531 (30.43) 2 099 (41.72) 1 401 (27.85) 5 031
  Female 1 570 (30.52) 2 134 (41.48) 1 441 (28.01) 5 145
Age/years,n(%) < 0.001
  7-12 1 788 (28.33) 2 668 (42.27) 1 856 (29.40) 6 312
  13-17 1 313 (33.98) 1 565 (40.50) 986 (25.52) 3 864
District,n(%) 0.001
  Urban 1 688 (31.78) 2 214 (41.68) 1 410 (26.54) 5 312
  Rural 1 413 (29.05) 2 019 (41.50) 1 432 (29.44) 4 864
Nutrition status,n(%) < 0.001
  Normal or below 2 368 (28.19) 3 514 (41.83) 2 518 (29.98) 8 400
  Overweight or above 733 (41.27) 719 (40.48) 324 (18.24) 1 776
Nation,n(%) 0.007
  Han 2 756 (30.06) 3 833 (41.81) 2 579 (28.13) 9 168
  Others 202 (36.33) 217 (39.03) 137 (24.64) 556
Education level of father,n(%) < 0.001
  Junior high school or below 1 228 (29.38) 1 643 (39.31) 1 309 (31.32) 4 180
  Senior high school or equivalent 760 (28.61) 1 145 (43.11) 751 (28.28) 2 656
  College or above 945 (31.88) 1 313 (44.30) 706 (23.82) 2 964
Education level of mother,n(%) < 0.001
  Junior high school or below 1 311 (29.03) 1 759 (38.95) 1 446 (32.02) 4 516
  Senior high school or equivalent 722 (29.81) 1 037 (42.82) 663 (27.37) 2 422
  College or above 908 (31.76) 1 296 (45.33) 655 (22.91) 2 859
Birth weight/kg,${\bar x}$±s 3.27±0.52 3.28±0.47 3.30±0.48 10 176 0.050
BMI/(kg/m2),${\bar x}$±s 19.66±3.99 18.77±3.83 18.11±3.60 10 176 < 0.001
WC/cm,${\bar x}$±s 69.31±10.99 65.79±10.48 62.82±10.04 10 176 < 0.001
SBP/mmHg,${\bar x}$±s 107.03±12.21 104.49±11.74 102.59±11.73 10 176 < 0.001
DBP/mmHg,${\bar x}$±s 67.77±8.88 65.99±8.68 65.13±8.78 10 176 < 0.001
TG/(mmol/L),${\bar x}$±s 0.95±0.49 0.92±0.46 0.92±0.46 10 176 0.030
HDL-C/(mmol/L),${\bar x}$±s 1.34±0.32 1.37±0.34 1.38±0.32 10 176 < 0.001
FBG/(mmol/L),${\bar x}$±s 4.74±0.67 4.76±0.62 4.70±0.61 10 176 0.001

表2

不同生长模式与MS关系的Logistic回归分析"

Growth patterns n(%)# Mode 1* Model 2*
OR(95%CI) P value OR(95%CI) P value
Normal growth 4 233 (6.40) 1 - 1 -
Catch-down growth 3 101 (8.84) 1.42 (1.19-1.69) < 0.001 1.25 (1.02-1.52) 0.03
Catch-up growth 2 842 (4.33) 0.66 (0.53-0.82) < 0.001 0.79 (0.62-1.01) 0.06

表3

不同生长模式与MS关系的分层分析"

Stratification factor Catch-down growth Catch-up growth
OR(95%CI) P value OR(95%CI) P value
Gender
  Male 1.28 (0.98-1.69) 0.07 0.71 (0.50-1.02) 0.07
  Female 1.23 (0.92-1.64) 0.16 0.85 (0.61-1.19) 0.34
Age/years
  7-12 1.41 (1.07-1.85) 0.02 0.66 (0.46-0.95) 0.03
  13-17 1.13 (0.84-1.51) 0.42 0.90 (0.64-1.26) 0.53
District
  Urban 1.38 (1.04-1.84) 0.03 0.66 (0.44-0.98) 0.04
  Rural 1.13 (0.85-1.49) 0.40 0.87 (0.64-1.20) 0.39
Nation
  Han 1.24 (1.10-1.52) 0.04 0.80 (0.62-1.03) 0.08
  Others 1.15 (0.47-2.79) 0.76 0.56 (0.17-1.81) 0.33
Birth weight
  Normal 1.22 (0.98-1.50) 0.07 0.81 (0.63-1.05) 0.11
  Low birth weight 1.92 (0.46-8.04) 0.37 3.64 (0.70-19.04) 0.13
  High birth weight 1.30 (0.70-2.42) 0.40 0.28 (0.09-0.85) 0.03
Nutrition status
  Normal or below 1.31 (0.96-1.79) 0.09 0.79 (0.55-1.12) 0.19
  Overweight or above 1.25 (0.96-1.62) 0.09 0.78 (0.55-1.11) 0.17
Education level of father
  Junior high school or below 1.60 (1.18-2.17) 0.002 1.02 (0.71-1.44) 0.93
  Senior high school or equivalent 1.00 (0.70-1.43) 1 0.57 (0.36-0.89) 0.01
  College or above 1.04 (0.69-1.55) 0.86 0.74 (0.42-1.29) 0.28
Education level of mother
  Junior high school or below 1.27 (0.96-1.70) 0.10 0.92 (0.67-1.27) 0.61
  Senior high school or equivalent 1.43 (0.97-2.11) 0.07 0.52 (0.29-0.93) 0.03
  College or above 1.05 (0.71-1.56) 0.80 0.75 (0.44-1.28) 0.29
1 Christian Flemming GM , Bussler S , Korner A , et al. Definition and early diagnosis of metabolic syndrome in children[J]. J Pediatr Endocrinol Metab, 2020, 33 (7): 821- 833.
doi: 10.1515/jpem-2019-0552
2 Cook S , Weitzman M , Auinger P , et al. Prevalence of a metabolic syndrome phenotype in adolescents: Findings from the third national health and nutrition examination survey, 1988-1994[J]. Arch Pediatr Adolesc Med, 2003, 157 (8): 821- 827.
doi: 10.1001/archpedi.157.8.821
3 Saklayen MG . The global epidemic of the metabolic syndrome[J]. Curr Hypertens Rep, 2018, 20 (2): 12.
doi: 10.1007/s11906-018-0812-z
4 Noubiap JJ , Nansseu JR , Lontchi TE , et al. Global, regional, and country estimates of metabolic syndrome burden in children and adolescents in 2020: A systematic review and modelling analysis[J]. Lancet Child Adolesc Health, 2022, 6 (3): 158- 170.
doi: 10.1016/S2352-4642(21)00374-6
5 何宇纳, 赵文华, 赵丽云, 等. 2010—2012年中国10~17岁儿童青少年代谢综合征流行情况[J]. 中华预防医学杂志, 2017, 51 (6): 513- 518.
doi: 10.3760/cma.j.issn.0253-9624.2017.06.011
6 Zong X , Li H , Zhang Y , et al. Retrospective mixed-longitudinal study on the growth trajectory of height among children and adolescents[J]. Zhonghua Er Ke Za Zhi, 2014, 52 (9): 655- 661.
7 Toftlund LH , Halken S , Agertoft L , et al. Catch-up growth, rapid weight growth, and continuous growth from birth to 6 years of age in very-preterm-born children[J]. Neonatology, 2018, 114 (4): 285- 293.
doi: 10.1159/000489675
8 Ong KK . Healthy growth and development[J]. Nestle Nutr Inst Workshop Ser, 2017, 87, 141- 151.
9 Ni Y , Beckmann J , Hurst JR , et al. Size at birth, growth trajectory in early life, and cardiovascular and metabolic risks in early adulthood: EPICure study[J]. Arch Dis Child Fetal Neonatal Ed, 2021, 106 (2): 149- 155.
doi: 10.1136/archdischild-2020-319328
10 于冬梅, 赵丽云, 朴建华, 等. 8省市儿童青少年代谢综合征流行现况及其主要影响因素[J]. 中国健康教育, 2012, 28 (6): 431- 433.
doi: 10.16168/j.cnki.issn.1002-9982.2012.06.003
11 程绪婷, 王宏, 袁保诚, 等. 2014年重庆城区儿童青少年代谢综合征及家庭影响因素[J]. 卫生研究, 2017, 46 (4): 557- 562.
doi: 10.19813/j.cnki.weishengyanjiu.2017.04.007
12 范晓琳, 苏如婷, 韩晓骏, 等. 青少年代谢综合征的现状及相关影响因素分析[J]. 中国医药, 2011, 6 (5): 549- 551.
doi: 10.3760/cma.j.issn.1673-4777.2011.05.018
13 张静娴, 田亭, 汪元元, 等. 2016—2017年江苏省7~17岁儿童青少年代谢综合征流行现状分析[J]. 实用预防医学, 2022, 29 (8): 916- 919.
doi: 10.3969/j.issn.1006-3110.2022.08.005
14 Chen Y , Ma L , Ma Y , et al. A national school-based health lifestyles interventions among Chinese children and adolescents against obesity: Rationale, design and methodology of a randomized controlled trial in China[J]. BMC Public Health, 2015, 15 (1): 210.
doi: 10.1186/s12889-015-1516-9
15 American Diabetes Association . Classification and diagnosis of diabetes: Standards of medical care in diabetes-2021[J]. Diabetes Care, 2021, 44 (Suppl 1): S15- S33.
16 Kuczmarski RJ , Ogden CL , Guo SS , et al. 2000 CDC growth charts for the United States: Methods and development[J]. Vital Health Stat 11, 2002, 11 (246): 1- 190.
17 Lourenço LP , Viola P , Franceschini S , et al. Metabolic syndrome and risk factors in children: A risk score proposal[J]. Eur J Clin Nutr, 2023, 77 (2): 278- 282.
doi: 10.1038/s41430-022-01217-z
18 Danese A , Moffitt TE , Harrington H , et al. Adverse childhood experiences and adult risk factors for age-related disease: Depression, inflammation, and clustering of metabolic risk markers[J]. Arch Pediatr Adolesc Med, 2009, 163 (12): 1135- 1143.
19 Su S , Wang X , Pollock JS , et al. Adverse childhood experiences and blood pressure trajectories from childhood to young adulthood: The Georgia stress and heart study[J]. Circulation, 2015, 131 (19): 1674- 1681.
doi: 10.1161/CIRCULATIONAHA.114.013104
20 Su S , Wang X , Kapuku GK , et al. Adverse childhood experiences are associated with detrimental hemodynamics and elevated circulating endothelin-1 in adolescents and young adults[J]. Hypertension, 2014, 64 (1): 201- 207.
doi: 10.1161/HYPERTENSIONAHA.113.02755
21 Kramer MS , Martin RM , Bogdanovich N , et al. Is restricted fetal growth associated with later adiposity? Observational analysis of a randomized trial[J]. Am J Clin Nutr, 2014, 100 (1): 176- 181.
doi: 10.3945/ajcn.113.079590
22 Cameron JL . Interrelationships between hormones, behavior, and affect during adolescence: Understanding hormonal, physical, and brain changes occurring in association with pubertal activation of the reproductive axis. Introduction to part Ⅲ[J]. Ann N Y Acad Sci, 2004, 1021 (1): 110- 123.
doi: 10.1196/annals.1308.012
23 Crowther NJ , Cameron N , Trusler J , et al. Influence of catch-up growth on glucose tolerance and beta-cell function in 7-year-old children: Results from the birth to twenty study[J]. Pediatrics, 2008, 121 (6): e1715- e1722.
doi: 10.1542/peds.2007-3147
24 陈曼曼, 陈力, 马莹, 等. 不同营养状况下儿童青少年生长模式与血压的关联[J]. 中国学校卫生, 2021, 42 (7): 1068- 1072.
25 Jayalakshmi R , Kannan S . The catch-up growth in stunted children: Analysis of first and second India human development survey data[J]. Indian J Community Med, 2019, 44 (3): 199- 204.
doi: 10.4103/ijcm.IJCM_127_18
26 Batista RF , Silva AA , Barbieri MA , et al. Factors associated with height catch-up and catch-down growth among schoolchildren[J]. PLoS One, 2012, 7 (3): e32903.
27 Karaca Ü , Schram MT , Houben AJ , et al. Microvascular dysfunction as a link between obesity, insulin resistance and hypertension[J]. Diabetes Res Clin Pract, 2014, 103 (3): 382- 387.
28 Embleton ND , Korada M , Wood CL , et al. Catch-up growth and metabolic outcomes in adolescents born preterm[J]. Arch Dis Child, 2016, 101 (11): 1026- 1031.
29 Tang A , Slopen N , Nelson CA , et al. Catch-up growth, meta-bolic, and cardiovascular risk in post-institutionalized Romanian adolescents[J]. Pediatr Res, 2018, 84 (6): 842- 848.
30 Goedegebuuer WJ , van der Steen M , Smeets CCJ , et al. SGA-born adults with postnatal catch-up have a persistently unfavourable metabolic health profile and increased adiposity at age 32 years[J]. Eur J Endocrinol, 2022, 187 (1): 15- 26.
31 Fafard St-Germain AA , Siddiqi A . The relation between household food insecurity and children's height in Canada and the United States: A scoping review[J]. Adv Nutr, 2019, 10 (6): 1126- 1137.
[1] 王敏, 李倩. 青少年抑郁症患者心理弹性影响因素的路径分析[J]. 北京大学学报(医学版), 2024, 56(5): 809-814.
[2] 赵双云, 邹思雨, 李雪莹, 沈丽娟, 周虹. 中文版口腔健康素养量表简版(HeLD-14)在学龄前儿童家长中应用的信度和效度评价[J]. 北京大学学报(医学版), 2024, 56(5): 828-832.
[3] 陈心心, 唐哲, 乔艳春, 荣文笙. 北京市密云区4岁儿童患龋状况及其与龋活跃性检测的相关性[J]. 北京大学学报(医学版), 2024, 56(5): 833-838.
[4] 郑生旗,花天池,殷桂草,张伟,姚曳,李一帆. 甘油三酯葡萄糖指数与男性肾结石风险的关联[J]. 北京大学学报(医学版), 2024, 56(4): 610-616.
[5] 岳芷涵,韩娜,鲍筝,吕瑾莨,周天一,计岳龙,王辉,刘珏,王海俊. 儿童早期体重指数轨迹与超重风险关联的前瞻性队列研究[J]. 北京大学学报(医学版), 2024, 56(3): 390-396.
[6] 费秀文,刘斯,汪波,董爱梅. 成人及儿童组织坏死性淋巴结炎临床特征及治疗[J]. 北京大学学报(医学版), 2024, 56(3): 533-540.
[7] 沈鹤军,侍崇艳,郑清,黄玉,景涛. 我国高中生静坐时长与健康素养现状及其影响因素调查[J]. 北京大学学报(医学版), 2024, 56(2): 239-246.
[8] 俞光岩. 儿童唾液腺疾病[J]. 北京大学学报(医学版), 2024, 56(1): 1-3.
[9] 闫晓晋,刘云飞,马宁,党佳佳,张京舒,钟盼亮,胡佩瑾,宋逸,马军. 《中国儿童发展纲要(2011-2020年)》实施期间中小学生营养不良率变化及其政策效应分析[J]. 北京大学学报(医学版), 2023, 55(4): 593-599.
[10] 弭小艺,侯杉杉,付子苑,周末,李昕璇,孟召学,蒋华芳,周虹. 中文版童年不良经历问卷在学龄前儿童父母中应用的信效度评价[J]. 北京大学学报(医学版), 2023, 55(3): 408-414.
[11] 党佳佳,蔡珊,钟盼亮,王雅琪,刘云飞,师嫡,陈子玥,张依航,胡佩瑾,李晶,马军,宋逸. 室外夜间人工光暴露与中国9~18岁儿童青少年超重肥胖的关联[J]. 北京大学学报(医学版), 2023, 55(3): 421-428.
[12] 陈敬,肖伍才,单蕊,宋洁云,刘峥. DRD2基因rs2587552多态性对儿童肥胖干预效果的影响:一项前瞻性、平行对照试验[J]. 北京大学学报(医学版), 2023, 55(3): 436-441.
[13] 郑丹枫,李君禹,李佳曦,张英爽,钟延丰,于淼. 青少年特发性脊柱侧凸椎旁肌的病理特征[J]. 北京大学学报(医学版), 2023, 55(2): 283-291.
[14] 李辉,高阳旭,王书磊,姚红新. 恶性肿瘤患儿完全植入式静脉输液港手术并发症[J]. 北京大学学报(医学版), 2022, 54(6): 1167-1171.
[15] 刘京,陆爱东,左英熹,吴珺,黄志卓,贾月萍,丁明明,张乐萍,秦炯. 儿童急性淋巴细胞白血病合并癫痫发作75例临床特征和预后分析[J]. 北京大学学报(医学版), 2022, 54(5): 948-953.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!